519 resultados para Linear Resonance Accelerator
Resumo:
Handling unbalanced and non-linear loads in a three-phase AC power supply has always been a difficult issue. This has been addressed in the literature by either using fast controllers in the fundamental rotating reference frame or using separate controllers in reference frames specific to the harmonics. In the former case, the controller needs to be fast and in the lattercase, besides the need for many controllers, negative-sequence components need to be extracted from the measured signal.This study proposes a control scheme for harmonic and unbalance compensation of a three-phase uninterruptible power supply wherein the problems mentioned above are addressed. The control takes place in the fundamental positive-sequence reference frame using only a set of feedback and feed-forward compensators. The harmonic components are extracted by process of frame transformations and used as feed-forward compensation terms in the positive-sequence fundamental reference frame. This study uses a method wherein the measured signal itself is used for fundamental negative-sequence compensation. As the feed-forward compensator handles the high-bandwidth components, the feedback compensator can be a simple low-bandwidth one. This control algorithm is explained and validated experimentally.
Resumo:
Anisotropic emission of gravitational waves (GWs) from inspiralling compact binaries leads to the loss of linear momentum and hence gravitational recoil of the system. The loss rate of linear momentum in the far-zone of the source (a nonspinning binary system of black holes in quasicircular orbit) is investigated at the 2.5 post-Newtonian (PN) order and used to provide an analytical expression in harmonic coordinates for the 2.5PN accurate recoil velocity of the binary accumulated in the inspiral phase. The maximum recoil velocity of the binary system at the end of its inspiral phase (i.e at the innermost stable circular orbit (ISCO)) estimated by the 2.5PN formula is of the order of 4 km s(-1) which is smaller than the 2PN estimate of 22 km s(-1). Going beyond inspiral, we also provide an estimate of the more important contribution to the recoil velocity from the plunge phase. The maximum recoil velocity at the end of the plunge, involving contributions both from inspiral and plunge phase, for a binary with symmetric mass ratio nu = 0.2 is of the order of 182 km s(-1).
Resumo:
The design of machine foundations are done on the basis of two principal criteria viz., vibration amplitude should be within the permissible limits and natural frequency of machine-foundation-soil system should be away from the operating frequency (i.e. avoidance of resonance condition). In this paper the nondimensional amplitude factor M-m or M-r m and the nondimensional frequency factor a(o m) at resonance are related using elastic half space theory and is used as a new approach for a simplified design procedure for the design of machine foundations for all the modes of vibration fiz. vertical, horizontal, rocking and torsional for rigid base pressure distribution and weighted average displacement condition. The analysis show that one need not know the value of Poisson's ratio for rotating mass system for all the modes of vibration.
Resumo:
Investigations on the switching behaviour of arsenic-tellurium glasses with Ge or Al additives, yield interesting information about the dependence of switching on network rigidity, co-ordination of the constituents, glass transition & ambient temperature and glass forming ability.
Resumo:
Carbon nanosheets (CNSs) have been synthesized by electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition (PECVD) using a mixture of acetylene and argon gases on copper foil as the substrate. Micrometer-wide carbon sheets consisting of several atomic layers thick graphene sheets have been synthesized by controlled decomposition of carbon radicals in ECR-PECVD. Raman spectroscopy of these films revealed characteristics of a disordered graphitic sheet. Thick folded carbon-sheets and a semi transparent freestanding CNSs have been observed by scanning electron microscopy. This is a promising technique to synthesize free standing CNSs and can be used in the fabrication of nanoelecronic devices in future. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the design and performance analysis of a detector based on suprathreshold stochastic resonance (SSR) for the detection of deterministic signals in heavy-tailed non-Gaussian noise. The detector consists of a matched filter preceded by an SSR system which acts as a preprocessor. The SSR system is composed of an array of 2-level quantizers with independent and identically distributed (i.i.d) noise added to the input of each quantizer. The standard deviation sigma of quantizer noise is chosen to maximize the detection probability for a given false alarm probability. In the case of a weak signal, the optimum sigma also minimizes the mean-square difference between the output of the quantizer array and the output of the nonlinear transformation of the locally optimum detector. The optimum sigma depends only on the probability density functions (pdfs) of input noise and quantizer noise for weak signals, and also on the signal amplitude and the false alarm probability for non-weak signals. Improvement in detector performance stems primarily from quantization and to a lesser extent from the optimization of quantizer noise. For most input noise pdfs, the performance of the SSR detector is very close to that of the optimum detector. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) approximate to 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) approximate to 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes, such as enzymes, in aqueous binary mixtures.
Resumo:
The Linear phase(LP) Finite Impulse Response(FIR) filters are widely used in many signal processing systems which are sensitive to phase distortion. In this article, we obtain a canonic lattice structure of an LP-FIR filter with a complex impulse response. This lattice structure is based on some novel lattice stages obtained from some properties of symmetric polynomials.This canonic lattice structure exploits the redundancy in the zeros of an LP-FIR filter.
Resumo:
Laminar separation bubbles are thought to be highly non-parallel, and hence global stability studies start from this premise. However, experimentalists have always realized that the flow is more parallel than is commonly believed, for pressure-gradient-induced bubbles, and this is why linear parallel stability theory has been successful in describing their early stages of transition. The present experimental/numerical study re-examines this important issue and finds that the base flow in such a separation bubble becomes nearly parallel due to a strong-interaction process between the separated boundary layer and the outer potential flow. The so-called dead-air region or the region of constant pressure is a simple consequence of this strong interaction. We use triple-deck theory to qualitatively explain these features. Next, the implications of global analysis for the linear stability of separation bubbles are considered. In particular we show that in the initial portion of the bubble, where the flow is nearly parallel, local stability analysis is sufficient to capture the essential physics. It appears that the real utility of the global analysis is perhaps in the rear portion of the bubble, where the flow is highly non-parallel, and where the secondary/nonlinear instability stages are likely to dominate the dynamics.
Resumo:
The loss rate of linear momentum from a binary system composed of compact objects (radially falling towards each other under mutual gravitational influence) has been investigated using the multipolar post-Minkowskian approach. The 2.5PN accurate analytical formula for the linear momentum flux is provided, in terms of the separation of the two objects, in harmonic coordinates, both for a finite and an infinite initial separation. The 2.5PN formulas for the linear momentum flux are finally used to estimate the recoil velocity accumulated during a premerger phase of the binary evolution.
Resumo:
We studied the feasibility of the measurement of Higgs pair creation at a photon linear collider. From the sensitivity to the anomalous self-coupling of the Higgs boson, the optimum gamma gamma collision energy was found to be around 270 GeV for a Higgs mass of 120 GeV/c(2). We found that large backgrounds such as gamma gamma -> W+W-, ZZ, and b (b) over barb (b) over bar can be suppressed if correct assignment of tracks to parent partons is achieved and Higgs pair events can be observed with a statistical significance of similar to 5 sigma by operating the photon linear collider for 5 years.
Resumo:
In this study we present a colorimetric detection method for Cr (VI) in aqueous solution based on as synthesized silver nanoparticles (Ag NPs) without surface functionalization. The method principle involves reduction of Cr (VI) to Cr (III) by excess reductant present in as synthesized Ag NP dispersion, and subsequent aggregation of Ag NPs by Cr (III) leading to red-shift of the surface plasmon resonance (SPR) peak. The UV-vis absorption spectra. Zeta potentials, dynamic light scattering measurements, and scanning electron microscopy (SEM) confirmed the aggregation of the Ag NPs. Under the optimized conditions, a good linear relationship (correlation coefficient r=0.981) was obtained between the ratio of the absorbance at 550 nm to that at 390 nm (A(550/390)) and the concentration of Cr (VI) over the range of 10(-3)-10(-9) M 50 mg/L to 50 ng/L]. The reported probe has a limit of detection down to 1 nM, which, to the best of our knowledge, is the lowest ever reported for the colorimetric detection of Cr (VI). Furthermore, a remarkable feature of this method is that it involves a simple technique exhibiting high selectivity to Cr (VI) over other tested heavy metal ions. (C) 2012 Elsevier BM. All rights reserved.
Resumo:
Diffuse optical tomography (DOT) is one of the ways to probe highly scattering media such as tissue using low-energy near infra-red light (NIR) to reconstruct a map of the optical property distribution. The interaction of the photons in biological tissue is a non-linear process and the phton transport through the tissue is modelled using diffusion theory. The inversion problem is often solved through iterative methods based on nonlinear optimization for the minimization of a data-model misfit function. The solution of the non-linear problem can be improved by modeling and optimizing the cost functional. The cost functional is f(x) = x(T)Ax - b(T)x + c and after minimization, the cost functional reduces to Ax = b. The spatial distribution of optical parameter can be obtained by solving the above equation iteratively for x. As the problem is non-linear, ill-posed and ill-conditioned, there will be an error or correction term for x at each iteration. A linearization strategy is proposed for the solution of the nonlinear ill-posed inverse problem by linear combination of system matrix and error in solution. By propagating the error (e) information (obtained from previous iteration) to the minimization function f(x), we can rewrite the minimization function as f(x; e) = (x + e)(T) A(x + e) - b(T)(x + e) + c. The revised cost functional is f(x; e) = f(x) + e(T)Ae. The self guided spatial weighted prior (e(T)Ae) error (e, error in estimating x) information along the principal nodes facilitates a well resolved dominant solution over the region of interest. The local minimization reduces the spreading of inclusion and removes the side lobes, thereby improving the contrast, localization and resolution of reconstructed image which has not been possible with conventional linear and regularization algorithm.
Resumo:
Present work presents a code written in the very simple programming language MATLAB, for three dimensional linear elastostatics, using constant boundary elements. The code, in full or in part, is not a translation or a copy of any of the existing codes. Present paper explains how the code is written, and lists all the formulae used. Code is verified by using the code to solve a simple problem which has the well known approximate analytical solution. Of course, present work does not make any contribution to research on boundary elements, in terms of theory. But the work is justified by the fact that, to the best of author’s knowledge, as of now, one cannot find an open access MATLAB code for three dimensional linear elastostatics using constant boundary elements. Author hopes this paper to be of help to beginners who wish to understand how a simple but complete boundary element code works, so that they can build upon and modify the present open access code to solve complex engineering problems quickly and easily. The code is available online for open access (as supplementary file for the present paper), and may be downloaded from the website for the present journal.
Resumo:
We report the results of magnetization and electron paramagnetic resonance (EPR) studies on nanoparticles (average diameter similar to 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and compare them with the results on bulk BCMO. The nanoparticles were prepared using the nonaqueous sol-gel technique and characterized by XRD and TEM analysis. Magnetization measurements were carried out with a commercial physical property measurement system (PPMS). While the bulk BCMO exhibits a charge ordering transition at similar to 230 K and an antiferromagnetic (AFM) transition at similar to 130 K, in the nanoparticles, the CO phase is seen to have disappeared and a transition to a ferromagnetic (FM) state is observed at T-c similar to 120 K. However, interestingly, the exchange bias effect observed in other nanomanganite ferromagnets is absent in BCMO nanoparticles. EPR measurements were carried out in the X-band between 8 and 300 K. Lineshape fitting to a Lorentzian with two terms (accounting for both the clockwise and anticlockwise rotations of the microwave field) was employed to obtain the relevant EPR parameters as functions of temperature. The results confirm the occurrence of ferromagnetism in the nanoparticles of BCMO. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4730612]