422 resultados para Aluminum Zinc Magnesium Alloys


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructural changes resulting from isothermal decomposition of the beta-phase have been studied in Cu-rich binary Cu-Al and ternary Cu-Al-Sn alloys containing up to 3 at.% Sn at temperatures from 873 to 673 K. Results are presented as TTT diagrams. The decomposition occurs in several stages, each of which involves the establishment of metastable equilibrium between beta and one or more of the product phases alpha, beta(1) and gamma(2). Addition of Sn has been shown to increase the stability of the ordered beta(1)-phase in relation to beta. In alloys containing more than 2 at.% Sn, the beta(1) emerges as a stable phase. At low Sn concentrations beta(1) is metastable. An important new finding is the existence of three-phase equilibrium microstructure containing alpha, beta(1) and gamma(2). Increasing addition of Sn alters the morphology of beta(1) from rosettes to dendrites and finally to Widmanstatten needles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work describes the tensile flow and work hardening behavior of a high strength 7010 aluminum alloy by constitutive relations. The alloy has been hot rolled by three different cross-rolling schedules. Room temperature tensile properties have been evaluated as a function of tensile axis orientation in the as-hot rolled as well as peak aged conditions. It is found that both the Ludwigson and a generalized Voce-Bergstrom relation adequately describe the tensile flow behavior of the present alloy in all conditions compared to the Hollomon relation. The variation in the Ludwigson fitting parameter could be correlated well with the microstructural features and anisotropic contribution of strengthening precipitates in the as-rolled and peak aged conditions, respectively. The hardening rate and the saturation stress of the first Voce-Bergstrom parameter, on the other hand, depend mainly on the crystallographic texture of the specimens. It is further shown that for the peak aged specimens the uniform elongation (epsilon(u)) derived from the Ludwigson relation matches well with the measured epsilon(u) irrespective of processing and loading directions. However, the Ludwigson fit overestimates the epsilon(u) in case of the as-rolled specimens. The Hollomon fit, on the other hand, predicts well the measured epsilon(u), of the as-rolled specimens but severely underestimates the epsilon(u), for the peak aged specimens. Contrarily, both the relations significantly overestimate the UTS of the as-rolled and the peak aged specimens. The Voce-Bergstrom parameters define the slope of e Theta-sigma plots in the stage-III regime when the specimens show a classical linear decrease in hardening rate in stage-III. Further analysis of work hardening behavior throws some light on the effect of texture on the dislocation storage and dynamic recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructural changes of Ni-rich NiTi shape memory alloy during thermal and thermo-mechanical cycling have been investigated using Electron Back Scattered Diffraction. A strong dependence of the orientation of the prior austenite grain on the misorientation development has been observed during thermal cycling and thermo-mechanical cycling. This effect is more pronounced at the grain boundaries compared to grain interior. At a larger applied strain, the volume fraction of stabilized martensite phase increases with increase in the number of cycling. Deformation within the martensite leads to stabilization of martensitic phase even at temperatures slightly above the austenite finish temperature. Modulus variation with respect to temperature has been explained on the basis of martensitic transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plastic deformation behavior and dynamic recrystallization (DRX) in homogenized AZ31 Mg alloy was investigated in uniaxial compression in the temperature range between 150 and 400 degrees C with strain rates ranging from 10(-3) to 10(2) s(-1). Twinning was found to contribute significantly during the early stages of deformation. The onset of twinning was examined in detail by recourse to the examination of the appearance of first local maxima before peak strain in the stress-strain responses and the second derivative of stress with strain. High strain hardening rate was observed immediately after the onset of twinning and was found to increase with the Zener-Hollomon parameter. DRX was observed at temperatures above 250 degrees C whereas deformation at lower temperatures (< 250 degrees C) leads to extensive twinning at all the strain rates. At intermediate temperatures of 250-300 degrees C, plastic strains tend to localize near grain/twin boundaries, confining DRX only to these regions. Increase in the temperature promotes non-basal slip, which, in turn, leads to uniform deformation; DRX too becomes uniform. Deformation behavior in three different regimes of temperature is discussed. The dependence of critical stress for the onset of DRX and peak flow stress on temperature and strain rate are also described. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensively studied Mn-doped semiconductor nanocrystals have invariably exhibited photoluminescence over a narrow energy window of width <= 150 meV in the orange-red region and a surprisingly large spectral width (>= 180 meV), contrary to its presumed atomic-like origin. Carrying out emission measurements on individual single nanocrystals and supported by ab initio calculations, we show that Mn PL emission, in fact, can (i) vary over a much wider range (similar to 370 meV) covering the deep green-deep red region and (ii) exhibit widths substantially lower (similar to 60-75 meV) than reported so far, opening newer application possibilities and requiring a fundamental shift in our perception of the emission from Mn-doped semiconductor nanocrystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous fungus-like ZnO nanostructures have been synthesized by simple thermal annealing of the hydrothermally synthesized sheet-like ZnS(en)(0.5) complex precursor in air at 600 degrees C. Structural and morphological changes occurring during ZnS(en)(0.5) -> ZnS -> ZnO transformations have been observed closely by annealing the as-synthesized precursor at 100-600 degrees C. Wurtzite ZnS nanosheets and ZnS-ZnO composites are obtained at temperatures of 400 degrees C and 500 degrees C, respectively. Thermal decomposition and oxidation of the ZnS(en) 0.5 nanosheets have been confirmed by differential scanning calorimetry and thermo-gravimetric analysis. The visible light driven photocatalytic degradation of methylene blue dye has been demonstrated in the synthesized samples. ZnS-ZnO composite shows the highest dye degradation efficiency of 74% due to the formation of surface complex as well as higher visible light absorption as a result of band-gap narrowing effect. The porous ZnO nanostructures show efficient visible photoluminescence (PL) emission with a colour coordinate of (0.29, 0.35), which is close to that of white light (0.33, 0.33). The efficient visible PL emission as well as visible light driven photocatalytic activity of the materials synthesized in the present work might be very attractive for their applications in future optoelectronic devices, including in white light emitting devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instrumented microindentation (IM) on two Ni-Ti shape memory alloys (SMAs), where one is austenitic and the other is martensitic at room temperature, were conducted from 40 to 150 degrees C. Results show that the depth and work recovery ratios, eta(d) and eta(w) respectively, are complementary to each other. While eta(d) decreases gradually with temperature for austenite, it drops markedly for the martensite in the martensite-to-austenite transformation regime. These results affirm the utility of IM for characterizing SMAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanoindentation technique can be employed in shape memory alloys (SMAs) to discern the transformation temperatures as well as to characterize their mechanical behavior. In this paper, we use it with simultaneous measurements of the mechanical and the electrical contact resistances (ECR) at room temperature to probe two SMAs: austenite (RTA) and martensite (RTM). Two different types of indenter tips - Berkovich and spherical - are employed to examine the SMAs' indentation responses as a function of the representative strain, epsilon(R). In Berkovich indentation, because of the sharp nature of the tip, and in consequence the high levels of strain imposed, discerning the two SMAs on the basis of the indentation response alone is difficult. In the case of the spherical tip, epsilon(R) is systematically varied and its effect on the depth recovery ratio, eta(d), is examined. Results indicate that RTA has higher eta(d) than RTM, but the difference decreases with increasing epsilon(R) such that eta(d) values for both the alloys would be similar in the fully plastic regime. The experimental trends in eta(d) vs. epsilon(R) for both the alloys could be described well with a eta(d) proportional to (epsilon(R))(-1) type equation, which is developed on the basis of a phenomenological model. This fit, in turn, directs us to the maximum epsilon(R), below which plasticity underneath the indenter would not mask the differences in the two SMAs. It was demonstrated that the ECR measurements complement the mechanical measurements in demarcating the reverse transformation from martensite to austenite during unloading of RTA, wherein a marked increase in the voltage was noted. A correlation between recovery due to reverse transformation during unloading and increase in voltage (and hence the electrical resistance) was found. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study of the evolution of the microstructure and crystallographic texture during free end torsion of a single phase magnesium alloy Mg-3Al-0.3Mn (AM30) was carried out. The torsion tests were done at a temperature of 250 degrees C to different strain levels in order to examine the progressive evolution of the microstructure and texture. A detailed microstructural analysis was performed using the electron back-scattered diffraction technique. The observed microstructural features indicated the occurrence of continuous dynamic recovery and recrystallization, starting with the formation of subgrains and ending with recrystallized grains with high angle boundaries. Texture and microstructure evolution were analysed by decoupling the effects of imposed shear and of dynamic recrystallization. Microstructure was partitioned to separate the deformed grains from the recovered/recrystallized grains. The texture of the deformed part could be reproduced by viscoplastic self-consistent polycrystal simulations. Recovered/recrystallized grains were formed as a result of rotation of these grains so as to reach a low plastic energy state. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development towards the combination of miniaturization and improved functionality of RFIC has been stalled due to the lack of high-performance integrated inductors. To meet this challenge, integration of magnetic material with high permeability as well as low conductivity is a must. Ferrite films are excellent candidates for RF devices due to their low cost, high resistivity, and low eddy current losses. Unlike its bulk counterpart, nanocrystalline zinc ferrite, because of partial inversion in the spinel structure, exhibits novel magnetic properties suitable for RF applications. However, most scalable ferrite film deposition processes require either high temperature or expensive equipment or both. We report a novel low temperature (< 200 degrees C) solution-based deposition process for obtaining high quality, polycrystalline zinc ferrite thin films (ZFTF) on Si (100) and on CMOS-foundry-fabricated spiral inductor structures, rapidly, using safe solvents and precursors. An enhancement of up to 20% at 5 GHz in the inductance of a fabricated device was achieved due to the deposited ZFTF. Substantial inductance enhancement requires sufficiently thick films and our reported process is capable of depositing smooth, uniform films as thick as similar to 20 mu m just by altering the solution composition. The method is capable of depositing film conformally on a surface with complex geometry. As it requires neither a vacuum system nor any post-deposition processing, the method reported here has a low thermal budget, making it compatible with modern CMOS process flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solidification pathways of Nb rich Nb-Si alloys when processed under non-equilibrium conditions require understanding. Continuing with our earlier work on alloying additions in single eutectic composition 1,2], we report a detailed characterization of the microstructures of Nb-Si binary alloys with wide composition range (10-25 at% Si). The alloys are processed using chilled copper mould suction casting. This has allowed us to correlate the evolution of microstructure and phases with different possible solidification pathways. Finally these are correlated with mechanical properties through studies on deformation using mechanical testing under indentation and compressive loads. It is shown that microstructure modification can significantly influence the plasticity of these alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the possibility of accelerated identification of potential compositions for high-temperature shape memory alloys (SMAs) through a combinatorial material synthesis and analysis approach, wherein we employ the combination of diffusion couple and indentation techniques. The former was utilized to generate smooth and compositionally graded inter-diffusion zones (IDZs) in the Ni-Ti-Pd ternary alloy system of varying IDZ thickness, depending on the annealing time at high temperature. The IDZs thus produced were then impressed with an indenter with a spherical tip so as to inscribe a predetermined indentation strain. Subsequent annealing of the indented samples at various elevated temperatures, T-a, ranging between 150 and 550 degrees C allows for partial to full relaxation of the strain imposed due to the shape memory effect. If T-a is above the austenite finish temperature, A(f), the relaxation will be complete. By measuring the depth recovery, which serves as a proxy for the shape recovery characteristic of the SMA, a three-dimensional map in the recovery temperature composition space is constructed. A comparison of the published Af data for different compositions with the Ta data shows good agreement when the depth recovery is between 70% and 80%, indicating that the methodology proposed in this paper can be utilized for the identification of promising compositions. Advantages and further possibilities of this methodology are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strain-controlled fatigue behaviour of Ti-6Al-4V alloy with up to 0.11 wt.% B addition was investigated. Results show significant softening when the strain amplitudes, Delta epsilon(T)/2, are >= 0.75%. B addition was found to improve the fatigue life for Delta epsilon(T)/2 <= 0.75% as it corresponds to the elastic regime and hence is strength dominated. At Delta epsilon(T)/2 = 1%, in contrast, the base alloy exhibits higher fatigue life as TiB particle cracking due to strain incompatibility causes easy crack nucleation in the B-modified alloys. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four dinucleating bis(thiosemicarbazone) ligands and their zinc complexes have been synthesized and characterized by multinuclear NMR (H-1 and C-13), IR, UV-Vis, ESI-MS and fluorescence spectroscopic techniques. Their purity was assessed by elemental analysis. Cytotoxicity was tested against five human cancer cell lines using the sulphorhodamine B (SRB) assay, where one of the complexes, 1,3-bis{biacetyl-2'-(4 `'-N-pyrrolidinylthiosemicarbazone)-3'-(4 `'-N-pyrrolidinylthiosemicarbazone) zinc(II)} propane (6), was found to be quite cytotoxic against MCF-7 (breast cancer) and HepG2 (hepatoma cancer) cell lines, with a potency similar to that of the well known anticancer drug adriamycin. It is evident from the cellular uptake studies that the uptake is same for the active complex 6 and the inactive complex 8 (1,6-bis{biacetyl- 2'-(4 `'-N-pyrrolidinylthiosemicarbazone)-3'-(4 `'-N-pyrrolidinylthiosemicarbazone) zinc(II)} hexane) in MCF-7 and HepG2 cell lines. In vitro DNA binding and cleavage studies revealed that all complexes bind with DNA through electrostatic interaction, and cause no significant cleavage of DNA. (C) 2'13 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ligand glyoxal bis(4-methyl-4-phenyl-3-thiosemicarbazone) (GTSCH2) is shown to be a selective fluorescence turn-on sensor for zinc ions (Zn2+). This sensor is easy to synthesize, exhibits excellent sensitivity and selectivity towards Zn2+ over other physiologically relevant cations, and has sub-nanomolar binding affinity. It displays maximum fluorescence response to Zn2+ when the metal/ligand ratio is 1:1 and displays stable fluorescence over a broad pH range. The potential of GTSCH2 to image Zn2+ inside the cell was demonstrated in MCF-7 cells (human breast cancer cell line) by using flow cytometry and confocal fluorescence microscopy. Cell viability studies reveal that the probe is biocompatible and suitable for cellular applications.