566 resultados para phase retrieval
Resumo:
Thin films of the semiconducting, monoclinic vanadium dioxide, VO2(M) have been prepared on ordinary glass by two methods: directly by low-pressure metalorganic chemical vapor deposition (MOCVD), and by argon-annealing films of the VO2(B) phase deposited by MOCVD. The composition and microstructure of the films have been examined by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Films made predominantly of either the B or the M phase, as deposited, can only be obtained over a narrow range of deposition temperatures. At the lower end of this temperature range, the as-deposited films are strongly oriented, although the substrate is glass. This can be understood from the drive to minimize surface energy. Films of the B phase have a platelet morphology, which leads to an unusual microstructure at the lower-deposition temperatures. Those grown at similar to370 degreesC convert to the metallic, rutile (R) phase when annealed at 550 degreesC, whereas those deposited at 420 degreesC transform to the R phase only at 580 degreesC. (When cooled to room temperature, the annealed films convert reversibly from the R phase to the M phase.) Electron microscopy shows that annealing leads to disintegration of the single crystalline VO2(B) platelets into small crystallites of VO2(R), although the platelet morphology is retained. When the annealing temperature is relatively low, these crystallites are nanometer sized. At a higher-annealing temperature, the transformation leads to well-connected and similarly oriented large grains of VO2(R), enveloped in the original platelet. The semiconductor-metal transition near 68 degreesC leads to a large jump in resistivity in all the VO2(M) films, nearly as large as in epitaxial films on single-crystal substrates. When the annealed films contain well-connected large grains, the transition is very sharp. Even when preferred orientation is present, the transition is not as sharp in as-deposited VO2(M), because the crystallites are not densely packed as in annealed VO2(B). However, the high degree of orientation in these films leads to a narrow temperature hysteresis. (C) 2002 American Institute of Physics.
Resumo:
We report high-pressure Raman, infrared (IR), and optical-absorption spectra of alpha-ZrMo2O8 (trigonal) up to 38 GPa at room temperature. The spectroscopic studies are consistent with diffraction results that show that alpha-ZrMo2O8 transforms into delta-ZrMo2O8 (monoclinic) at about 1 GPa and the delta phase converts to the epsilon phase (trielinic) at about 2.0 GPa. Optical-absorption measurements give an estimate of the band gap of about 0.6 eV at the lowest pressure. Band-gap changes with pressure are confirmed with visual observations. ZrMo2O8 changes from transparent at 5 GPa to yellow at 10 GPa, red at 18 GPa, and at about 30 GPa it becomes opaque.
Resumo:
Real-time kinetics of ligand-ligate interaction has predominantly been studied by either fluorescence or surface plasmon resonance based methods. Almost all such studies are based on association between the ligand and the ligate. This paper reports our analysis of dissociation data of monoclonal antibody-antigen (hCG) system using radio-iodinated hCG as a probe and nitrocellulose as a solid support to immobilize mAb. The data was analyzed quantitatively for a one-step and a two-step model. The data fits well into the two-step model. We also found that a fraction of what is bound is non-dissociable (tight-binding portion (TBP)). The TBP was neither an artifact of immobilization nor does it interfere with analysis. It was present when the reaction was carried out in homogeneous solution in liquid phase. The rate constants obtained from the two methods were comparable. The work reported here shows that real-time kinetics of other ligand-ligate interaction can be studied using nitrocellulose as a solid support. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Neutron powder diffraction measurements on Ca2FeReO6 reveal that this double perovskite orders ferrimagnetically and shows anomalous lattice parameter behavior below T-C=521 K. Below similar to300 K and similar to160 K we observe that the high-T monoclinic crystal structure separates into two and three monoclinic phases, respectively. A magnetic field suppresses the additional phases at low T in favor of the highest-T phase. These manifestations of the orbital degree of freedom of Re 5d electrons indicate that these electrons are strongly correlated and the title compound is a Mott insulator, with competing spin-orbitally ordered states.
Resumo:
Isothermal sections of the phase diagrams for the systems Ln-Pd-O (with Ln = Tb or Er) have been established by equilibration of samples at T = 1223 K, and phase identification after quenching by optical and scanning electron microscopy (OM, SEM), energy dispersive spectroscopy (EDS), and X-ray powder diffraction (XRPD). Two oxide phases were stable along the binary Tb-O: Tb2O3+x, a phase of variable composition, and Tb7O12 at T = 1223K. The oxide PdO was not stable at this temperature. Only one ternary oxide Tb2Pd2O5 was identified in the Tb-Pd-O system. No ternary compound was found in the system Er-Pd-O at T = 1223K. However, the compound Er2Pd2O5 could be synthesized at T = 1075 K by the hydrothermal route. In both systems, the alloys and inter-metallic compounds were all found to be in equilibrium with the lanthanide sesquioxide Ln(2)O(3) (where Ln is either Tb or Er). Two solid-state cells, each incorporating a buffer electrode, were designed to measure the Gibbs energy of formation of the ternary oxides, using yttria-stabilized zirconia as the solid electrolyte and pure oxygen gas as the reference electrode. Electromotive force measurements were conducted in the temperature range (900-1275) K for Th-Pd-O system, and at temperatures from (900-1075) K for the system Er-Pd-O. The standard Gibbs energy of formation Delta(f)G(m)degrees,, of the inter-oxide compounds from their component binary oxides Ln(2)O(3) and PdO are represented by equations linear in temperature. Isothermal chemical potential diagrams for the systems Ln-Pd-O (with Ln = Tb or Er) are developed based on the thermodynamic information. (C) 2002 Elsevier Science Ltd. All rights reserved.
Direct measurement of phase of foreward-scattered light using polarization heterodyne interferometer
Resumo:
We describe direct measurement of phase of ballistic photons transmitted through objects hidden in a turbid medium using a polarization interferometer employing a rotating analyzer. The unwrapped phase difference measurements from interferometry was possible for medium levels of turbidity and accurate phase measurement from the sinusoidal intensity was not detectable when l/l* is increased beyond 4.3. The measured phase on reconstruction using standard tomographic algorithms resulted in the recovery of the refractive index profile of the object hidden in the turbid medium.
Resumo:
A series of high-martensite dual-phase (HMDP) steels exhibiting a 0.3 to 0.8 volume fraction of martensite (V m ), produced by intermediate quenching (IQ) of a vanadium and boron-containing microalloyed steel, have been studied for toughness and fatigue behavior to supplement the contents of a recent report by the present authors on the unusual tensile behavior of these steels. The studies included assessment of the quasi-static and dynamic fracture toughness and fatigue-crack growth (FCG) behavior of the developed steels. The experimental results show that the quasi-static fracturetoughness (K ICV ) increases with increasing V m in the range between V m =0.3 and 0.6 and then decreases, whereas the dynamic fracture-toughness parameters (K ID , K D , and J ID ) exhibit a significant increase in their magnitudes for steels containing 0.45 to 0.60 V m before achieving a saturation plateau. Both the quasi-static and dynamic fracture-toughness values exhibit the best range of toughnesses for specimens containing approximately equal amounts of precipitate-free ferrite and martensite in a refined microstructural state. The magnitudes of the fatigue threshold in HMDP steels, for V m between 0.55 and 0.60, appear to be superior to those of structural steels of a similar strength level. The Paris-law exponents (m) for the developed HMDP steels increase with increasing V m , with an attendant decrease in the pre-exponential factor (C).
Resumo:
The compounds YBa2−xLaxCu3Oy, with compositions (0
Resumo:
We report a novel phase behavior in aqueous solutions of simple organic solutes near their liquid/liquid critical points, where a solid-like third phase appears at the liquid/liquid interface. The phenomenon has been found in three different laboratories. It appears in many aqueous systems of organic solutes and becomes enhanced upon the addition of salt to these solutions.
Resumo:
Model Reference Adaptive Control (MRAC) of a wide repertoire of stable Linear Time Invariant (LTI) systems is addressed here. Even an upper bound on the order of the finite-dimensional system is unavailable. Further, the unknown plant is permitted to have both minimum phase and nonminimum phase zeros. Model following with reference to a completely specified reference model excited by a class of piecewise continuous bounded signals is the goal. The problem is approached by taking recourse to the time moments representation of an LTI system. The treatment here is confined to Single-Input Single-Output (SISO) systems. The adaptive controller is built upon an on-line scheme for time moment estimation of a system given no more than its input and output. As a first step, a cascade compensator is devised. The primary contribution lies in developing a unified framework to eventually address with more finesse the problem of adaptive control of a large family of plants allowed to be minimum or nonminimum phase. Thus, the scheme presented in this paper is confined to lay the basis for more refined compensators-cascade, feedback and both-initially for SISO systems and progressively for Multi-Input Multi-Output (MIMO) systems. Simulations are presented.
Resumo:
In this paper we develop an analytical heat transfer model, which is capable of analyzing cyclic melting and solidification processes of a phase change material used in the context of electronics cooling systems. The model is essentially based on conduction heat transfer, with treatments for convection and radiation embedded inside. The whole solution domain is first divided into two main sub-domains, namely, the melting sub-domain and the solidification sub-domain. Each sub-domain is then analyzed for a number of temporal regimes. Accordingly, analytical solutions for temperature distribution within each subdomain are formulated either using a semi-infinity consideration, or employing a method of quasi-steady state, depending on the applicability. The solution modules are subsequently united, leading to a closed-form solution for the entire problem. The analytical solutions are then compared with experimental and numerical solutions for a benchmark problem quoted in the literature, and excellent agreements can be observed.
Resumo:
We have studied the evolution of microstructure when a disordered ternary alloy is quenched into a ternary miscibility gap. We have used computer simulations based on multicomponent Cahn-Hilliard (CH) equations for c(A) and c(B), the compositions (in mole fraction) of A and B, respectively. In this work, we present our results on the effect of relative interfacial energies on the temporal evolution of morphologies during spinodal phase separation of an alloy with average composition, c(A) = 1/4, c(B) = 1/4 and c(C) = 1/2. Interfacial energies between the 'A' rich, 'B' rich and 'C' rich phases are varied by changing the gradient energy coefficients. The phases associated with a higher interfacial energy are found to be more rounded than those with lower energy. Further, the kinetic paths (i.e. the history of A-rich, B-rich and C-rich regions in the microstructure) are also affected significantly by the relative interfacial energies of the three phases.
Resumo:
Phase transformations of Al2O3 and Na2O · 6Al2O3 prepared by the gel route have been investigated for the first time by 27Al MAS NMR spectroscopy in combination with x-ray diffraction. Of particular interest in the study is the kinetics of the γ → α and γ → β transformations, respectively, in these two systems. Analysis of the kinetic data shows the important role of nucleation in both these transformations.
Resumo:
We control the stiffnesses of two dual double cantelevers placed in series to control penetration into a perflurooctyltrichlorosilane monolayer self assembled on aluminium and silicon substrates. The top cantilever which carries the probe is displaced with respect to the bottom cantilever which carries the substrate, the difference in displacement recorded using capacitors gives penetration. We further modulate the input displacement sinusoidally to deconvolute the viscoelastic properties of the monolayer. When the intervention is limited to the terminal end of the molecule there is a strong viscous response in consonance with the ability of the molecule to dissipate energy by the generation of gauche defects freely. When the intervention reaches the backbone, at a contact mean pressure of 0.2GPa the damping disappears abruptly and the molecule registers a steep rise in elastic modulus and relaxation time constant, with increasing contact pressure. We offer a physical explanation of the process and describe this change as due to a phase transition from a liquid like to a solid like state.
Resumo:
We have investigated the effect of biaxial strain on local electrical/electronic properties in thin films of La0.7Ca0.3MnO3 with varying degrees of biaxial strain in them. The local electrical properties were investigated as a function of temperature by scanning tunneling spectroscopy (STS) and scanning tunneling potentiometry (STP), along with the bulk probe like conductance fluctuations.The results indicate a positive correlation between the lattice mismatch biaxial strain and the local electrical/electronic inhomogenities observed in the strained sample. This is plausible since the crystal structure of the manganites interfere rather strongly with the magnetic/electronic degrees of freedom. Thus even a small imbalance (biaxial strain) can induce significant changes in the electrical properties of the system.