410 resultados para Linear-polymers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report non-saturating linear magnetoresistance (MR) in a two-dimensional electron system (2DES) at a GaAs/AlGaAs heterointerface in the strongly insulating regime. We achieve this by driving the gate voltage below the pinch-off point of the device and operating it in the non-equilibrium regime with high source-drain bias. Remarkably, the magnitude of MR is as large as 500% per Tesla with respect to resistance at zero magnetic field, thus dwarfing most non-magnetic materials which exhibit this linearity. Its primary advantage over most other materials is that both linearity and the enormous magnitude are retained over a broad temperature range (0.3 K to 10 K), thus making it an attractive candidate for cryogenic sensor applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to suppress chronic inflammation while supporting cell proliferation, there has been a continuous surge toward development of polymers with the intention of delivering anti-inflammatory molecules in a sustained manner. In the above backdrop, we report the synthesis of a novel, stable, cross-linked polyester with salicylic acid (SA) incorporated in the polymeric backbone and propose a simple synthesis route by melt condensation. The as-synthesized polymer was hydrophobic with a glass transition temperature of 1 degrees C, which increases to 17 degrees C upon curing. The combination of NMR and FT-IR spectral techniques established the ester linkages in the as-synthesized SA-based polyester. The pH-dependent degradation rate and the rate of release of salicylic acid from the as-synthesized SA-based polymer were studied at physiological conditions in vitro. The polyester underwent surface erosion and exhibited linear degradation kinetics in which a change in degradation rate is observed after 4-10 days and 24% mass loss was recorded after 4 months at 37 degrees C and pH 7.4. The delivery of salicylic acid also showed a similar change in slopes, with a sustained release rate of 3.5% in 4 months. The cytocompatibility studies of these polyesters were carried out with C2C12 murine myoblast cells using techniques like MTT assay and flow cytometry. Our results strongly suggest that SA-based polyester supports cell proliferation for 3 days in culture and do not cause cell death (<7%), as quantified by propidium iodide (PI) stained cells. Hence, these polyesters can be used as implant materials for localized, sustained delivery of salicylic acid and have applications in adjuvant cancer therapy, chronic wound healing, and as an alternative to commercially available polymers like poly(lactic acid) and poly(glycolic acid) or their copolymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elastic Net Regularizers have shown much promise in designing sparse classifiers for linear classification. In this work, we propose an alternating optimization approach to solve the dual problems of elastic net regularized linear classification Support Vector Machines (SVMs) and logistic regression (LR). One of the sub-problems turns out to be a simple projection. The other sub-problem can be solved using dual coordinate descent methods developed for non-sparse L2-regularized linear SVMs and LR, without altering their iteration complexity and convergence properties. Experiments on very large datasets indicate that the proposed dual coordinate descent - projection (DCD-P) methods are fast and achieve comparable generalization performance after the first pass through the data, with extremely sparse models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a simple technique for reducing the computational effort while solving any geotechnical stability problem by using the upper bound finite element limit analysis and linear optimization. In the proposed method, the problem domain is discretized into a number of different regions in which a particular order (number of sides) of the polygon is chosen to linearize the Mohr-Coulomb yield criterion. A greater order of the polygon needs to be selected only in that region wherein the rate of the plastic strains becomes higher. The computational effort required to solve the problem with this implementation reduces considerably. By using the proposed method, the bearing capacity has been computed for smooth and rough strip footings and the results are found to be quite satisfactory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of time variant reliability analysis of randomly parametered and randomly driven nonlinear vibrating systems is considered. The study combines two Monte Carlo variance reduction strategies into a single framework to tackle the problem. The first of these strategies is based on the application of the Girsanov transformation to account for the randomness in dynamic excitations, and the second approach is fashioned after the subset simulation method to deal with randomness in system parameters. Illustrative examples include study of single/multi degree of freedom linear/non-linear inelastic randomly parametered building frame models driven by stationary/non-stationary, white/filtered white noise support acceleration. The estimated reliability measures are demonstrated to compare well with results from direct Monte Carlo simulations. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a second order sliding mode observer (SOSMO) design for discrete time uncertain linear multi-output system. The design procedure is effective for both matched and unmatched bounded uncertainties and/or disturbances. A second order sliding function and corresponding sliding manifold for discrete time system are defined similar to the lines of continuous time counterpart. A boundary layer concept is employed to avoid switching across the defined sliding manifold and the sliding trajectory is confined to a boundary layer once it converges to it. The condition for existence of convergent quasi-sliding mode (QSM) is derived. The observer estimation errors satisfying given stability conditions converge to an ultimate finite bound (within the specified boundary layer) with thickness O(T-2) where T is the sampling period. A relation between sliding mode gain and boundary layer is established for the existence of second order discrete sliding motion. The design strategy is very simple to apply and is demonstrated for three examples with different class of disturbances (matched and unmatched) to show the effectiveness of the design. Simulation results to show the robustness with respect to the measurement noise are given for SOSMO and the performance is compared with pseudo-linear Kalman filter (PLKF). (C) 2013 Published by Elsevier Ltd. on behalf of The Franklin Institute

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical formulation has been proposed for solving an axisymmetric stability problem in geomechanics with upper bound limit analysis, finite elements, and linear optimization. The Drucker-Prager yield criterion is linearized by simulating a sphere with a circumscribed truncated icosahedron. The analysis considers only the velocities and plastic multiplier rates, not the stresses, as the basic unknowns. The formulation is simple to implement, and it has been employed for finding the collapse loads of a circular footing placed over the surface of a cohesive-frictional material. The formulation can be used to solve any general axisymmetric geomechanics stability problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study considers linear filtering methods for minimising the end-to-end average distortion of a fixed-rate source quantisation system. For the source encoder, both scalar and vector quantisation are considered. The codebook index output by the encoder is sent over a noisy discrete memoryless channel whose statistics could be unknown at the transmitter. At the receiver, the code vector corresponding to the received index is passed through a linear receive filter, whose output is an estimate of the source instantiation. Under this setup, an approximate expression for the average weighted mean-square error (WMSE) between the source instantiation and the reconstructed vector at the receiver is derived using high-resolution quantisation theory. Also, a closed-form expression for the linear receive filter that minimises the approximate average WMSE is derived. The generality of framework developed is further demonstrated by theoretically analysing the performance of other adaptation techniques that can be employed when the channel statistics are available at the transmitter also, such as joint transmit-receive linear filtering and codebook scaling. Monte Carlo simulation results validate the theoretical expressions, and illustrate the improvement in the average distortion that can be obtained using linear filtering techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, research on polymer has drawn much attention mainly due to the ever increasing application of these polymeric materials in several areas such as food packaging industry, agricultural industry and biomedical research. However, increasing industrial use of polymers has led to the environmentally critical issue of waste disposal. Further, the successful implication of polymeric materials in biomedical applications depends on the biodegradability of the concerned polymer. Various enzymes play an important role in the biodegradation of polymers. The present review describes the enzyme mediated biodegradation of various polymers including synthetic, natural and blends of these materials. Detailed examples of enzymatic degradation of polymers are illustrated from current scientific literature with the discussion on various factors that can influence the degradation. In addition, different techniques that are generally applied to assess the degradation process as well as degradation products have been described. Finally, a special emphasis is given to the investigation of the kinetics of polymer degradation by enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport of charge carriers through conjugated polymers is strongly influenced by the presence and distribution of structural disorders. In the present work, structural defects caused by the presence of torsional.. angle were investigated in a diketopyrrolopyrrole (DPP)-based conjugated polymer. Two new copolymers of DPP were synthesized with varying torsional angles to trace the role of structural disorder. The optical properties of these copolymers in solution and thin film reveal the strong influence of torsional angle on their photophysical properties. A strong influence was observed on carrier transport properties of polymers in organic field-effect transistors (OFET) device geometry. The polymers based on phenyl DPP with higher torsional angle (PPTDPP-OD-TEG) resulted in high threshold voltage with less charge carrier mobility as compared to the polymer based on thiophene DPP (2DPP-OD-TEG) bearing a lower torsional angle. Carrier mobility and the molecular orientation of the conjugated polymers were correlated on the basis of grazing incidence X-ray scattering measurements showing the strong role of torsional angle introduced in the form of structural disorder. The results presented in this Article provide a deep insight into the sensitivity of structural disorder and its impact on the device performance of DPP-based conjugated polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two porous organic polymers decorated with the amide functionality were synthesized mechanochemically and their properties were compared with the ones prepared by conventional solution mediated method. All the POPs were subjected to gas and water vapor sorption studies. The mechanochemically synthesized POPs have less surface area and show moderate adsorption properties compared to the solution mediated POPs. The amide based POPs show remarkable stability in water and concentrated acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diketopyrrolopyrrole (DPP)-based pi-conjugated copolymers with thiophene have exceptionally high electron mobilities. This paper investigates electronic properties and charge carrier mobilities of selenophene containing analogues. Two new copolymers, with alternating thiophene DPP (TDPP) and selenophene DPP (SeDPP) units, were synthesized. Two side-chains, hexyl (Hex) and triethylene glycol (TEG) were employed, yielding polymers designated as PTDPPSeDPP-Hex and PTDPPSeDPP-TEG. Selenophene systems have smaller band gaps, with concomitant enhancement of the stability of the reduced state. For both polymers, ambipolar mobilities were observed in organic field-effect transistors (OFET). Grazing incidence X-ray diffraction (GIXD) data indicates preferential edge-on orientation of PTDPPSeDPP-TEG, which leads to superior charge transport properties of the TEG substituted polymer, as compared to its Hex analogue. Time-dependent-density functional theory (TDDFT) calculations corroborate the decrease in the optical band gap with the inclusion of selenophene. Ambipolar charge transport is rationalized by exceptionally wide conduction bands. Delta SCF calculations confirm the larger electron affinity, and therefore the greater stability, of the reduced form of the selenophene-containing DPP polymer in presence of chloroform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary role of substituted side chains in organic semiconductors is to increase their solubility in common organic solvents. In the recent past, many literature reports have suggested that the side chains play a critical role in molecular packing and strongly impact the charge transport properties of conjugated polymers. In this work, we have investigated the influence of side-chains on the charge transport behavior of a novel class of diketopyrrolopyrrole (DPP) based alternating copolymers. To investigate the role of side-chains, we prepared four diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP) conjugated polymers with varied side-chains and carried out a systematic study of thin film microstructure and charge transport properties in polymer thin-film transistors (PTFTs). Combining results obtained from grazing incidence X-ray diffraction (GIXD) and charge transport properties in PTFTs, we conclude side-chains have a strong influence on molecular packing, thin film microstructure, and the charge carrier mobility of DPP-DPP copolymers. However, the influence of side-chains on optical properties was moderate. The preferential ``edge-on'' packing and dominant n-channel behavior with exceptionally high field-effect electron mobility values of >1 cm(2) V-1 s(-1) were observed by incorporating hydrophilic (triethylene glycol) and hydrophobic side-chains of alternate DPP units. In contrast moderate electron and hole mobilities were observed by incorporation of branched hydrophobic side-chains. This work clearly demonstrates that the subtle balance between hydrophobicity and hydrophilicity induced by side-chains is a powerful strategy to alter the molecular packing and improve the ambipolar charge transport properties in DPP-DPP based conjugated polymers. Theoretical analysis supports the conclusion that the side-chains influence polymer properties through morphology changes, as there is no effect on the electronic properties in the gas phase. The exceptional electron mobility is at least partially a result of the strong intramolecular conjugation of the donor and acceptor as evidenced by the unusually wide conduction band of the polymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate here that supramolecular interactions enhance the sensitivity towards detection of electron-deficient nitro-aromatic compounds (NACs) over discrete analogues. NACs are the most commonly used explosive ingredients and are common constituents of many unexploded landmines used during World WarII. In this study, we have synthesised a series of pyrene-based polycarboxylic acids along with their corresponding discrete esters. Due to the electron richness and the fluorescent behaviour of the pyrene moiety, all the compounds act as sensors for electron-deficient NACs through a fluorescence quenching mechanism. A Stern-Volmer quenching constant determination revealed that the carboxylic acids are more sensitive than the corresponding esters towards NACs in solution. The high sensitivity of the acids was attributed to supramolecular polymer formation through hydrogen bonding in the case of the acids, and the enhancement mechanism is based on an exciton energy migration upon excitation along the hydrogen-bond backbone. The presence of intermolecular hydrogen bonding in the acids in solution was established by solvent-dependent fluorescence studies and dynamic light scattering (DLS) experiments. In addition, the importance of intermolecular hydrogen bonds in solid-state sensing was further explored by scanning tunnelling microscopy (STM) experiments at the liquid-solid interface, in which structures of self-assembled monolayer of the acids and the corresponding esters were compared. The sensitivity tests revealed that these supramolecular sensors can even detect picric acid and trinitrotoluene in solution at levels as low as parts per trillion (ppt), which is much below the recommended permissible level of these constituents in drinking water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conducting polymers have the combined advantages of metal conductivity with ease in processing and biocompatibility; making them extremely versatile for biosensor and tissue engineering applications. However, the inherent brittle property of conducting polymers limits their direct use in such applications which generally warrant soft and flexible material responses. Addition of fillers increases the material compliance, but is achieved at the cost of reduced electrical conductivity. To retain suitable conductivity without compromising the mechanical properties, we fabricate an electroactive blend (dPEDOT) using low grade PEDOT: PSS as the base conducting polymer with polyvinyl alcohol as filler and glycerol as a dopant. Bulk dPEDOT films show a thermally stable response till 110 degrees C with over seven fold increase in room temperature conductivity as compared to 0.002 S cm(-1) for pristine PEDOT: PSS. We characterize the nonlinear stress-strain response of dPEDOT, well described using a Mooney-Rivlin hyperelastic model, and report elastomer-like moduli with ductility similar to fives times its original length. Dynamic mechanical analysis shows constant storage moduli over a large range of frequencies with corresponding linear increase in tan(delta). We relate the enhanced performance of dPEDOT with the underlying structural constituents using FTIR and AFM microscopy. These data demonstrate specific interactions between individual components of dPEDOT, and their effect on surface topography and material properties. Finally, we show biocompatibility of dPEDOT using fibroblasts that have comparable cell morphologies and viability as the control, which make dPEDOT attractive as a biomaterial.