545 resultados para Blend films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Further miniaturization of magnetic and electronic devices demands thin films of advanced nanomaterials with unique properties. Spinel ferrites have been studied extensively owing to their interesting magnetic and electrical properties coupled with stability against oxidation. Being an important ferrospinel, zinc ferrite has wide applications in the biological (MRI) and electronics (RF-CMOS) arenas. The performance of an oxide like ZnFe2O4 depends on stoichiometry (defect structure), and technological applications require thin films of high density, low porosity and controlled microstructure, which depend on the preparation process. While there are many methods for the synthesis of polycrystalline ZnFe2O4 powder, few methods exist for the deposition of its thin films, where prolonged processing at elevated temperature is not required. We report a novel, microwave-assisted, low temperature (<100°C) deposition process that is conducted in the liquid medium, developed for obtaining high quality, polycrystalline ZnFe2O4 thin films on technologically important substrates like Si(100). An environment-friendly solvent (ethanol) and non-hazardous oxide precursors (β-diketonates of Zn and Fe in 1:2 molar ratio), forming a solution together, is subjected to irradiation in a domestic microwave oven (2.45 GHz) for a few minutes, leading to reactions which result in the deposition of ZnFe2O4 films on Si (100) substrates suspended in the solution. Selected surfactants added to the reactant solution in optimum concentration can be used to control film microstructure. The nominal temperature of the irradiated solution, i.e., film deposition temperature, seldom exceeds 100°C, thus sharply lowering the thermal budget. Surface roughness and uniformity of large area depositions (50x50 mm2) are controlled by tweaking the concentration of the mother solution. Thickness of the films thus grown on Si (100) within 5 min of microwave irradiation can be as high as several microns. The present process, not requiring a vacuum system, carries a very low thermal budget and, together with a proper choice of solvents, is compatible with CMOS integration. This novel solution-based process for depositing highly resistive, adherent, smooth ferrimagnetic films on Si (100) is promising to RF engineers for the fabrication of passive circuit components. It is readily extended to a wide variety of functional oxide films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the dielectric properties of PVA/ZnO nanocomposites films were evaluated. The composites were prepared by a solution casting technique. The dispersion and functionalization of the ZnO nanoparticles in the composite films were characterized by spectroscopic technique. The surface morphology of the PVA/ZnO nanocomposites films were elucidated using AFM. The charge transport properties were evaluated based on the dielectric and impedance spectroscopy techniques. Low ZnO loading composite shows low dielectric value at higher frequency and behaves as a lossless material. The complex impedance spectra suggest the change in conductivity, due to the change in bulk resistance of the materials and less relaxation time. Thus, all PVA/ZnO nanocomposites behave as lossless materials above 10(6) Hz indicating the composites are useful in microwave application. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study is focussed at establishing an appropriate electrolyte system for developing electrochemically stable and fluorine (F) containing titania (F-TiO2) films on Cp Ti by micro-arc oxidation (MAO) technique. To fabricate the F-TiO2 films on Cp Ti, different electrolyte solutions of chosen concentrations of tri-sodium orthophosphate (TSOP, Na3PO4 center dot I2H2O), potassium hydroxide (KOH) and various F-containing compounds such as ammonium fluoride (NH4F), potassium fluoride (KF), sodium fluoride (NaF) and potassium fluorotitanate (K2TiF6) are employed. The structural and morphological characteristics, thickness and elemental composition of the developed films have been assessed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The in-vitro electrochemical corrosion behavior of the films was studied under Kokubo simulated body fluid (SBF) environment by potentiodynamic polarization, long term potential measurement and electrochemical impedance spectroscopy (EIS) methods. The XRD and SEM-EDS results show that the rutile content in the films vary in the range of 15-37 wt% and the F and P contents in the films is found to be in the range of 2-3 at% and 2.9-4.7 at% respectively, suggesting that the anatase to rutile phase transformation and the incorporation of F and P into the films are significantly controlled by the respective electrolyte solution. The SEM elemental mapping results show that the electrolyte borne F and P elements are incorporated and distributed uniformly in all the films. Among all the films under study, the film developed with 5 g TSOP+2 g KOH+3 g K2TiF6 electrolyte system exhibits considerably improved in-vitro corrosion resistance and therefore best suited for biomedical applications. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of chemical treatment on the surface morphology and other physical properties of tin monosulphide (SnS) thin films have been investigated. The SnS films treated with selected organic solvents exhibited strong improvement in their crystalline-quality and considerable decrease in electrical resistivity. Particularly, the films treated with chloroform showed very low electrical resistivity of similar to 5 Omega cm and a low optical band gap of 1.81 eV as compared to untreated and treated SnS films with other chemicals. From these studies we realized that the chemical treatment of SnS films has strong impact on their surface morphology and also on other physical properties. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 and Al2O3 are commonly used materials in optical thin films in the visible and near‐infrared wavelength region due to their high transparency and good stability. In this work, TiO2 and Al2O3 single, and nano composite thin films with different compositions were deposited on glass and silicon substrates at room temperature using a sol‐gel spin coater. The optical properties like reflectance, transmittance and refractive index have been studied using Spectrophotometer, and structural properties using X‐Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical switching studies on amorphous Ge17Te83−xSnx thin films (1 ≤ x ≤ 4) has been done to find their suitability for Phase Change Memory application; Bulk ingots in glassy form are prepared using conventional melt quenching technique and the thin films are coated using flash evaporation technique. Samples are found to exhibit memory type of electrical switching behavior. The switching voltages of Ge17Te83−xSnx thin films have been found to decrease with increase in Sn concentration. The comparatively lower switching voltages of Ge17Te83−xSnx samples, make them suitable candidates for phase change memory applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible and thermally stable, freestanding hybrid organic/inorganic based polymer-composite films have been fabricated using a simple solution casting method. Polyvinylbutyral and amine functionalized mesoporous silica were used to synthesize the composite. An additional polyol-''tripentaerythritol''-component was also used to increase the -OH group content in the composite matrix. The moisture permeability of the composites was investigated by following a calcium degradation test protocol. This showed a reduction in the moisture permeability with the increase in functionalized silica loadings in the matrix. A reduction in permeability was observed for the composites as compared to the neat polymer film. The thermal and mechanical properties of these composites were also investigated by various techniques like thermogravimetric analysis, differential scanning calorimetry, tensile experiments, and dynamic mechanical analysis. It was observed that these properties detonate with the increase in the functionalized silica content and hence an optimized loading is required in order to retain critical properties. This deterioration is due to the aggregation of the fillers in the matrix. Furthermore, the films were used to encapsulate P3HT (poly 3 hexyl thiophene) based organic Schottky structured diodes, and the diode characteristics under accelerated aging conditions were studied. The weathered diodes, encapsulated with composite film showed an improvement in the lifetime as compared to neat polymer film. The initial investigation of these films suggests that they can be used as a moisture barrier layer for organic electronics encapsulation application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we have reported the controlled synthesis of uniformly grown zinc oxide nanoparticles (ZnO NPs) films by a simple, low-cost, and scalable pulsed spray pyrolysis technique. From the surface analysis it is noticed that the as-deposited films have uniformly dispersed NPs-like morphology. The structural studies reveal that these NPs films have highly crystalline hexagonal crystal structure, which are preferentially orientated along the (001) planes. The size of the NPs varied between 5 and 100 nm, and exhibited good stoichiometric chemical composition. Raman spectroscopic analysis reveals that these ZnO NPs films have pure single phase and hexagonal crystal structure. These unique nanostructured films exhibited a low electrical resistivity (5 Omega cm) and high light transmittance (90 %) in visible region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report, strong ultraviolet (UV) emission from ZnO nanoparticle thin film obtained by a green synthesis, where the film is formed by the microwave irradiation of the alcohol solution of the precursor. The deposition is carried out in non-aqueous medium without the use of any surfactant, and the film formation is quick (5 min). The film is uniform comprising of mono-disperse nanoparticles having a narrow size distribution (15-22 nm), and that cover over an entire area (625 mm(2)) of the substrate. The growth rate is comparatively high (30-70 nm/min). It is possible to tune the morphology of the films and the UV emission by varying the process parameters. The growth mechanism is discussed precisely and schematic of the growth process is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the evidence for the anisotropic magnetoimpedance behavior in (001) oriented La0.7Sr0.3MnO3 (LSMO) thin films, in low frequency-low magnetic field regime. (001) oriented LSMO thin films were deposited using pulsed laser deposition and characterized with X-ray diffraction and temperature dependent magnetization studies. In the in-plain configuration, an ac magnetoresistance (MRac) of similar to -0.5% was observed at 1000 Oe, at 100 Hz frequency in these films. The MRac was found to decrease with increase in frequency. We observe increases in MRac at low frequency, indicating major contribution for change of permeability from domain wall motion. At higher frequencies, it decreases due to decrease in transverse permeability, resulting from dampening of domain wall motion. Out-of-plane configuration showed MRac similar to 5.5% at 1000 Oe, at 100 Hz frequency. The MRac turned from positive to negative with increase in frequency in out-of-plane configuration. These changes are attributed to the change in permeability of the film with the frequency and applied magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-oxide semiconductor capacitors based on titanium dioxide (TiO2) gate dielectrics were prepared by RF magnetron sputtering technique. The deposited films were post-annealed at temperatures in the range 773-1173 K in air for 1 hour. The effect of annealing temperature on the structural properties of TiO2 films was investigated by X-ray diffraction and Raman spectroscopy, the surface morphology was studied by atomic force microscopy (AFM) and the electrical properties of Al/TiO2/p-Si structure were measured recording capacitance-voltage and current-voltage characteristics. The as-deposited films and the films annealed at temperatures lower than 773 K formed in the anatase phase, while those annealed at temperatures higher than 973 K were made of mixtures of the rutile and anatase phases. FTIR analysis revealed that, in the case of films annealed at 1173 K, an interfacial layer had formed, thereby reducing the dielectric constant. The dielectric constant of the as-deposited films was 14 and increased from 25 to 50 with increases in the annealing temperature from 773 to 973 K. The leakage current density of as-deposited films was 1.7 x 10(-5) and decreased from 4.7 X 10(-6) to 3.5 x 10(-9) A/cm(2) with increases in the annealing temperature from 773 to 1173 K. The electrical conduction in the Al/TiO2/p-Si structures was studied on the basis of the plots of Schottky emission, Poole-Frenkel emission and Fowler-Nordheim tunnelling. The effect of structural changes on the current-voltage and capacitance-voltage characteristics of Al/TiO2/p-Si capacitors was also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of alumina (Al2O3) were deposited over Si < 1 0 0 > substrates at room temperature at an oxygen gas pressure of 0.03 Pa and sputtering power of 60 W using DC reactive magnetron sputtering. The composition of the as-deposited film was analyzed by X-ray photoelectron spectroscopy and the O/Al atomic ratio was found to be 1.72. The films were then annealed in vacuum to 350, 550 and 750 degrees C and X-ray diffraction results revealed that both as-deposited and post deposition annealed films were amorphous. The surface morphology and topography of the films was studied using scanning electron microscopy and atomic force microscopy, respectively. A progressive decrease in the root mean square (RMS) roughness of the films from 1.53 nm to 0.7 nm was observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on p-type Si < 1 0 0 > substrate to study the effect of temperature and frequency on the dielectric property of the films and the results are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure and cadmium doped tin oxide thin films were deposited on glass substrates from aqueous solution of cadmium acetate, tin (IV) chloride and sodium hydroxide by the nebulizer spray pyrolysis (NSP) technique. X-ray diffraction reveals that all films have tetragonal crystalline structure with preferential orientation along (200) plane. On application of the Scherrer formula, it is found that the maximum size of grains is 67 nm. Scanning electron microscopy shows that the grains are of rod and spherical in shape. Energy dispersive X-ray analysis reveals the average ratio of the atomic percentage of pure and Cd doped SnO2 films. The electrical resistivity is found to be 10(2) Omega cm at higher temperature (170 degrees C) and 10(3) Omega cm at lower temperature (30 degrees C). Optical band gap energy was determined from transmittance and absorbance data obtained from UV-vis spectra. Optical studies reveal that the band gap energy decreases from 3.90 eV to 3.52 eV due to the addition of Cd as dopant with different concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter, we present the interesting results of photodarkening (PD), transition toward photostability, and a slow crossover from PD to photobleaching when composition of the chalcogenide glassy thin film changes from Ge-deficient to rich. A subsequent Raman analysis on these as-prepared and irradiated samples provide the direct evidence of photoinduced structural rearrangement, i.e., photocrystallization of Se and the removal of edge-sharing GeSe4 tetrahedra. Further, our experimental results clearly demonstrate that light-induced effects can be effectively controlled by choosing the right composition and provide valuable information on synthesizing photostable/sensitive glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the application of polyelectrolyte multilayer (PEM) coated metal slides in enhancing fluorescence signal. We observed around eight-fold enhancement in fluorescence for protein incubated on PEM coated on aluminium mirror surface with respect to that of functionalized bare glass slides. The fluorescence intensities were also compared with commercially available FAST (R) slides (Whatman) offering 3D immobilization of proteins and the results were found to be comparable. We also showed that PEM coated on low-cost and commonly available aluminium foils also results in comparable fluorescence enhancement as sputtered aluminium mirrors. Immunoassay was also performed, using model proteins, on aluminium mirror as well as on aluminium foil based devices to confirm the activity of proteins. This work demonstrated the potential of PEMs in the large-scale, roll-to-roll manufacturing of fluorescence enhancements substrates for developing disposable, low-cost devices for fluorescence based diagnostic methods.