428 resultados para Alummium-silicon Alloy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An AlCrCuNiFeCo high entropy alloy (HEA), which has simple face centered cubic (FCC) and body centered cubic (BCC) solid solution phases as the microstructural constituents, was processed and its high temperature deformation behaviour was examined as a function of temperature (700-1030 degrees C) and strain rate (10(-3)-10(-1) s(-1)), so as to identify the optimum thermo-mechanical processing (TMP) conditions for hot working of this alloy. For this purpose, power dissipation efficiency and deformation instability maps utilizing that the dynamic materials model pioneered by Prasad and co-workers have been generated and examined. Various deformation mechanisms, which operate in different temperature-strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results indicate two distinct deformation domains within the range of experimental conditions examined, with the combination of 1000 degrees C/10(-3) s(-1) and 1030 degrees C/10(-2) s(-1) being the optimum for hot working. Flow instabilities associated with adiabatic shear banding, or localized plastic flow, and or cracking were found for 700-730 degrees C/10(-3)-10(-1) s(-1) and 750-860 degrees C/10(-1.4)-10(-1) s(-1) combinations. A constitutive equation that describes the flow stress of AlCrCuNiFeCo alloy as a function of strain rate and deformation temperature was also determined. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a theoretical model for studying the effects of shrinkage induced flow on the growth rate of binary alloy dendrites. An equivalent undercooling of the melt is defined in terms of ratio of the phase densities to represent the change in dendrite growth rate due to variation in solutal and thermal transport resulting from shrinkage induced flow. Subsequently, results for dendrite growth rate predicted by the equivalent undercooling model is compared with the corresponding predictions obtained using an enthalpy based numerical method for dendrite growth with shrinkage. The agreement is found to be good. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sound weld was obtained between 2024-T3 Al alloy and AZ31B-O Mg alloy dissimilar metal plates of 5 mm thickness, at a rotational speed of 300 rev min(-1) and at a welding speed of 50 mm min(-1). One of the parameter studied was, the effect of interface offset variation, on the quality and properties of the welded samples and on the thickness of intermetallic layer formed in the welded samples. The intermetallic layer at the midst of the weld volume contains intermetallic compounds Al12Mg17 and Al3Mg2. Highest tensile strength of 106.86 MPa, corresponding tensile joint efficiency of 44.52% and corresponding elongation 1.33% were obtained for the tensile sample, with interface offset of 0.66 mm from zero interface offset in retreating side and with approximate least intermetallic thickness of 1.2 mu m. Dissimilar friction stir welded joint samples had failed completely in brittle fracture mode; the position of tensile fracture was located at the midst of intermetallic layer, which had maximum hardness and minimum ductility. The nano hardness values fluctuate in the weld nugget owing to dynamic recrystallization of alloy materials and formation of brittle intermetallic compounds of alloy materials in the weld nugget; maximum hardness of 10.74 GPa occurred for the sample with least intermetallic thickness of 1.2 mu m. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous hydrogenated silicon (a-Si:H) is well-known material in the global semiconductor industry. The quality of the a-Si:H films is generally decided by silicon and hydrogen bonding configuration (Si-H-x, x=1,2) and hydrogen concentration (C-H). These quality aspects are correlated with the plasma parameters like ion density (N-i) and electron temperature (T-e) of DC, Pulsed DC (PDC) and RF plasmas during the sputter-deposition of a-Si:H thin films. It was found that the N-i and T-e play a major role in deciding Si-H-x bonding configuration and the C-H value in a-Si:H films. We observed a trend in the variation of Si-H and Si-H-2 bonding configurations, and C-H in the films deposited by DC, Pulsed DC and RF reactive sputtering techniques. Ion density and electron energy are higher in RF plasma followed by PDC and DC plasma. Electrons with two different energies were observed in all the plasmas. At a particular hydrogen partial pressure, RF deposited films have higher C-H followed by PDC and then DC deposited films. The maximum energy that can be acquired by the ions was found to be higher in RF plasma. Floating potential (V-f) is more negative in DC plasma, whereas, plasma potential (V-p) is found to be more positive in RF plasma. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction stir processing (FSP) is emerging as one of the most competent severe plastic deformation (SPD) method for producing bulk ultra-fine grained materials with improved properties. Optimizing the process parameters for a defect free process is one of the challenging aspects of FSP to mark its commercial use. For the commercial aluminium alloy 2024-T3 plate of 6 mm thickness, a bottom-up approach has been attempted to optimize major independent parameters of the process such as plunge depth, tool rotation speed and traverse speed. Tensile properties of the optimum friction stir processed sample were correlated with the microstructural characterization done using Scanning Electron Microscope (SEM) and Electron Back-Scattered Diffraction (EBSD). Optimum parameters from the bottom-up approach have led to a defect free FSP having a maximum strength of 93% the base material strength. Micro tensile testing of the samples taken from the center of processed zone has shown an increased strength of 1.3 times the base material. Measured maximum longitudinal residual stress on the processed surface was only 30 MPa which was attributed to the solid state nature of FSP. Microstructural observation reveals significant grain refinement with less variation in the grain size across the thickness and a large amount of grain boundary precipitation compared to the base metal. The proposed experimental bottom-up approach can be applied as an effective method for optimizing parameters during FSP of aluminium alloys, which is otherwise difficult through analytical methods due to the complex interactions between work-piece, tool and process parameters. Precipitation mechanisms during FSP were responsible for the fine grained microstructure in the nugget zone that provided better mechanical properties than the base metal. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The precipitation behavior of the magnesium alloy WE43 (Mg-4%Y-2.3%Nd-0.5%Zr) has been studied in strained and unstrained conditions using Transmission Electron Microscopy (TEM). Ageing treatments were carried out at three temperatures, namely 210 degrees C, 230 degrees C and 260 degrees C. The precipitation sequence during static aging of solution treated (ST) samples has been identified as ST —> beta'' —> beta' followed by the formation of beta(1) and equilibrium beta precipitates form after very long ageing periods. Dynamic precipitation was observed during high temperature deformation, leading to the formation of beta' and intermediate beta(1) precipitates. The strained samples, when further heat treated, resulted in the transformation of beta(1) into beta equilibrium precipitates. The sequence of dynamic precipitation is ST —> beta(1) —> beta and ST —> beta'. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Textured silicon (Si) substrate were prepared using various texturing methods both chemical and physical and their water contact angle, surface topography and Raman spectra were studied and investigated. The effect of plasma and chemical treatment on micro/nanostructure and roughness of the surface with and without deposition of Octadecyltrichlorosilane (ODTS, Cl3Si (CH3)(17)), self-assembled monolayer (SAM) is investigated for achieving higher water contact angle (theta(c)). The importance of synergism of texturing with deposition of ODTS SAM in preparing superhydrophobic silicon surfaces has been discussed. It is shown that superhydrophobic silicon surfaces can be achieved on silicon surfaces by coating with ODTS, irrespective of whether it is textured or not, polished or unpolished, provided a chemical treatment is given to the surface prior to the ODTS coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by counter flowing water. It results in continuous formation of columnar dendrites on plate wall. Due to forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously to produce semisolid slurry at plate exit. Melt pouring temperature provides required condition of solidification whereas plate inclination enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained was solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets were heat treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets were analyzed. Effects of melt pouring temperature and plate inclination on solidification and microstructure of billets produced using oblique plate were described. The investigations involved four different melt pouring temperatures (620, 625, 630 and 635 degrees C) associated with four different plate inclinations (30 degrees, 45 degrees, 60 degrees and 75 degrees). Melt pouring temperature of 625 degrees C with plate inclination of 60 degrees shows fine and globular microstructures and it is the optimum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 2D multi-particle model is carried out to understand the effect of microstructural variations and loading conditions on the stress evolution in Al-Si alloy under compression. A total of six parameters are varied to create 26 idealized microstructures: particle size, shape, orientation, matrix temper, strain rate, and temperature. The effect of these parameters is investigated to understand the fracture of Si particles and the yielding of Al matrix. The Si particles are modeled as a linear elastic solid and the Al matrix is modeled as an elasto-plastic solid. The results of the study demonstrate that the increase in particle size decreases the yield strength of the alloy. The particles with high aspect ratio and oriented at 0A degrees and 90A degrees to the loading axis show higher stress values. This implies that the particle shape and orientation are dominant factors in controlling particle fracture. The heat treatment of the alloy is found to increase the stress levels of both particles and matrix. Stress calculations also show that higher particle fracture and matrix yielding is expected at higher strain rate deformation. Particle fracture decreases with increase in temperature and the Al matrix plays an important role in controlling the properties of the alloy at higher temperatures. Further, this strain rate and temperature dependence is more pronounced in the heat-treated microstructure. These predictions are consistent with the experimentally observed Si particle fracture in real microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of crystallographic texture in a nanocrystalline nickel-20 wt% cobalt alloy has been investigated for deformation up to large strains. The effect of texture on magnetic properties has been evaluated. The material shows characteristic copper-type texture at large strain levels. Microstructural examinations indicate that the evolution of texture is assisted by deformation-induced grain growth. The values of saturation magnetization and coercivity have been correlated with the crystallographic texture and grain size. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stress states in Si particles of cast Al-Si based alloys depend on its morphology and the heat treatment given to the alloy. The Si particles fracture less on modification and fracture more in the heat treated condition. An attempt has been made in this work to study the effect of heat treatment and Si modification on the stress states of the particles. Such understanding will be valuable for predicting the ductility of the alloy. The stress states of Si particles are estimated by Raman technique and compared with the microstructure-based FEM simulations. Combination of Electron Back-Scattered Diffraction (EBSD) and frequency shift, polarized micro-Raman technique is applied to determine the stress states in Si particles with (111) orientations. Stress states are measured in the as-received state and under uniaxial compression. The residual stress, the stress in the elastic-plastic regime and the stress which causes fracture of the particles is estimated by Raman technique. FEM study demonstrates that the stress distribution is uniform in modified Si, whereas the unmodified Si shows higher and more complex stress states. The onset of plastic flow is observed at sharp corners of the particles and is followed by localization of strain between particles. Clustering of particles generates more inhomogeneous plastic strain in the matrix. Particle stress estimated by Raman technique is in agreement with FEM calculations. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase diagram studies of succinonitrile-vanillin system show the formation of 2:1 congruent melting type compound. Crystallization velocities of pure components, succinonitrile-vanillin complex, and two eutectics have been determined at different undercoolings. On the basis of heat of fusion measurements, excess thermodynamic functions have been calculated. Microstructural studies revealed that impurities modify the morphology. FTIR spectral studies and computer simulation have shown the existence of hydrogen bonding in the eutectics and the congruent melting compound. On the basis of experimental results, the mechanism of formation of eutectics and its solidification behavior are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The AA5086 aluminum alloy sheets with different starting textures were subjected to shock wave deformation with an input impulse of similar to 0.2 Ns. Microstructural examination indicate no significant change in grain size; however, the evolution of substructure manifesting intra-granular misorientation was evident. The improvement in hardness indicates the absence of recovery and strain hardening during shock deformation. Shock deformed samples show characteristic texture evolution with high Brass {110}< 112 > component. The study demonstrates the viability of high velocity forming of AA5086 aluminum alloy sheet using shock wave. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, effect of pouring temperature (650 degrees C, 655 degrees C, and 660 degrees C) on semi-solid microstructure evolution of in-situ magnesium silicide (Mg2Si) reinforced aluminum (Al) alloy composite has been studied. The shear force exerted by the cooling slope during gravity driven flow of the melt facilitates the formation of near spherical primary Mg2Si and primary Al grains. Shear driven melt flow along the cooling slope and grain fragmentation have been identified as the responsible mechanisms for refinement of primary Mg2Si and Al grains with improved sphericity. Results show that, while flowing down the cooling slope, morphology of primary Mg2Si and primary Al transformed gradually from coarse dendritic to mixture of near spherical particles, rosettes, and degenerated dendrites. In terms of minimum grain size and maximum sphericity, 650 degrees C has been identified as the ideal pouring temperature for the cooling slope semi-solid processing of present Al alloy composite. Formation of spheroidal grains with homogeneous distribution of reinforcing phase (Mg2Si) improves the isotropic property of the said composite, which is desirable in most of the engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon is the second most abundant element on the Earth and one of the more abundant elements in our Solar System. Variations in the relative abundance of the stable isotopes of Si (Si isotope fractionation) in different natural reservoirs, both terrestrial (surface and deep Earth) as well as extra-terrestrial (e.g. meteorites, lunar samples), are a powerful tracer of present and past processes involving abiotic as well as biotic systems. The versatility of the Si isotope tracer is reflected in its wide-ranging applications from understanding the origin of early Solar System objects, planetary differentiation, Moon formation, mantle melting and magma differentiation on the Earth, ancient sea-water composition, to modern-day weathering, clay formation and biological fractionation on land as well as in the oceans. The application of Si isotopes as tracers of natural processes started over six decades ago and its usage has seen a sudden increase over the last decade due to improvements in mass spectrometry, particularly the advent of multi-collector inductively coupled plasma mass spectrometers, which has made Si isotope measurements safe and relatively easy while simultaneously improving the accuracy and precision of measurements.