375 resultados para optimal route finding
Resumo:
The time division multiple access (TDMA) based channel access mechanisms perform better than the contention based channel access mechanisms, in terms of channel utilization, reliability and power consumption, specially for high data rate applications in wireless sensor networks (WSNs). Most of the existing distributed TDMA scheduling techniques can be classified as either static or dynamic. The primary purpose of static TDMA scheduling algorithms is to improve the channel utilization by generating a schedule of smaller length. But, they usually take longer time to schedule, and hence, are not suitable for WSNs, in which the network topology changes dynamically. On the other hand, dynamic TDMA scheduling algorithms generate a schedule quickly, but they are not efficient in terms of generated schedule length. In this paper, we propose a novel scheme for TDMA scheduling in WSNs, which can generate a compact schedule similar to static scheduling algorithms, while its runtime performance can be matched with those of dynamic scheduling algorithms. Furthermore, the proposed distributed TDMA scheduling algorithm has the capability to trade-off schedule length with the time required to generate the schedule. This would allow the developers of WSNs, to tune the performance, as per the requirement of prevalent WSN applications, and the requirement to perform re-scheduling. Finally, the proposed TDMA scheduling is fault-tolerant to packet loss due to erroneous wireless channel. The algorithm has been simulated using the Castalia simulator to compare its performance with those of others in terms of generated schedule length and the time required to generate the TDMA schedule. Simulation results show that the proposed algorithm generates a compact schedule in a very less time.
Resumo:
Mobile Ad hoc Networks (MANETs) are self-organized, infrastructureless, decentralized wireless networks consist of a group of heterogeneous mobile devices. Due to the inherent characteristics of MANE -Ts, such as frequent change of topology, nodes mobility, resource scarcity, lack of central control, etc., makes QoS routing is the hardest task. QoS routing is the task of routing data packets from source to destination depending upon the QoS resource constraints, such as bandwidth, delay, packet loss rate, cost, etc. In this paper, we proposed a novel scheme of providing QoS routing in MANETs by using Emergent Intelligence (El). The El is a group intelligence, which is derived from the periodical interaction among a group of agents and nodes. We logically divide MANET into clusters by centrally located static agent, and in each cluster a mobile agent is deployed. The mobile agent interacts with the nodes, neighboring mobile agents and static agent for collection of QoS resource information, negotiations, finding secure and reliable nodes and finding an optimal QoS path from source to destination. Simulation and analytical results show that the effectiveness of the scheme. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.ore/licenscs/by-nc-nd/4.0/). Peer-review under responsibility of the Conference Program Chairs
Resumo:
In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of C-0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings.
Resumo:
Nanocrystalline Mn0.4Zn0.6SmxGdyFe2-(x+y)O4 (x = y = 0.01, 0.02, 0.03, 0.04 and 0.05) were synthesized by combustion route. The detailed structural studies were carried out through X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM). The results confirms the formation of mixed spine phase with cubic structure due to the distortion created with co-dopants substitution at Fe site in Mn-Zn ferrite lattice. Further, the crystallite size increases with an increase of Sm3+-Gd3+ ions concentration while lattice parameter and lattice strain decreases. Furthermore, the effect of Sm-Gd co-doping in Mn-Zn ferrite on the room temperature electrical (dielectric studies) studies were carried out in the wide frequency range 1 GHz-5 GHz. The magnetic studies were carried out using vibrating sample magnetometer (VSM) under applied magnetic field of 1.5T and also room temperature electron paramagnetic resonance (EPR) spectra's were recorded. From the results of dielectric studies, it shows that the real and imaginary part of permittivities are increasing with variation of Gd3+ and Sm3+ concentration. The magnetic studies reveal the decrease of remnant, saturation magnetization and coercivity with increasing of Sm3+-Gd3+ ion concentration. The g-value, peak-to-peak line width and spin concentration evaluated from EPR spectra correlated with cations occupancy. The electromagnetic properties clearly indicate that these materials are the good candidates which are useful at L and C band frequency. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We are given a set of sensors at given locations, a set of potential locations for placing base stations (BSs, or sinks), and another set of potential locations for placing wireless relay nodes. There is a cost for placing a BS and a cost for placing a relay. The problem we consider is to select a set of BS locations, a set of relay locations, and an association of sensor nodes with the selected BS locations, so that the number of hops in the path from each sensor to its BS is bounded by h(max), and among all such feasible networks, the cost of the selected network is the minimum. The hop count bound suffices to ensure a certain probability of the data being delivered to the BS within a given maximum delay under a light traffic model. We observe that the problem is NP-Hard, and is hard to even approximate within a constant factor. For this problem, we propose a polynomial time approximation algorithm (SmartSelect) based on a relay placement algorithm proposed in our earlier work, along with a modification of the greedy algorithm for weighted set cover. We have analyzed the worst case approximation guarantee for this algorithm. We have also proposed a polynomial time heuristic to improve upon the solution provided by SmartSelect. Our numerical results demonstrate that the algorithms provide good quality solutions using very little computation time in various randomly generated network scenarios.
Resumo:
This paper considers the problem of energy-based, Bayesian spectrum sensing in cognitive radios under various fading environments. Under the well-known central limit theorem based model for energy detection, we derive analytically tractable expressions for near-optimal detection thresholds that minimize the probability of error under lognormal, Nakagami-m, and Weibull fading. For the Suzuki fading case, a generalized gamma approximation is provided, which saves on the computation of an integral. In each case, the accuracy of the theoretical expressions as compared to the optimal thresholds are illustrated through simulations.
Resumo:
The inverted pendulum is a popular model for describing bipedal dynamic walking. The operating point of the walker can be specified by the combination of initial mid-stance velocity (v(0)) and step angle (phi(m)) chosen for a given walk. In this paper, using basic mechanics, a framework of physical constraints that limit the choice of operating points is proposed. The constraint lines thus obtained delimit the allowable region of operation of the walker in the v(0)-phi(m) plane. A given average forward velocity v(x,) (avg) can be achieved by several combinations of v(0) and phi(m). Only one of these combinations results in the minimum mechanical power consumption and can be considered the optimum operating point for the given v(x, avg). This paper proposes a method for obtaining this optimal operating point based on tangency of the power and velocity contours. Putting together all such operating points for various v(x, avg,) a family of optimum operating points, called the optimal locus, is obtained. For the energy loss and internal energy models chosen, the optimal locus obtained has a largely constant step angle with increasing speed but tapers off at non-dimensional speeds close to unity.
Resumo:
In metropolitan cities, public transportation service plays a vital role in mobility of people, and it has to introduce new routes more frequently due to the fast development of the city in terms of population growth and city size. Whenever there is introduction of new route or increase in frequency of buses, the nonrevenue kilometers covered by the buses increases as depot and route starting/ending points are at different places. This non-revenue kilometers or dead kilometers depends on the distance between depot and route starting point/ending point. The dead kilometers not only results in revenue loss but also results in an increase in the operating cost because of the extra kilometers covered by buses. Reduction of dead kilometers is necessary for the economic growth of the public transportation system. Therefore, in this study, the attention is focused on minimizing dead kilometers by optimizing allocation of buses to depots depending upon the shortest distance between depot and route starting/ending points. We consider also depot capacity and time period of operation during allocation of buses to ensure parking safety and proper maintenance of buses. Mathematical model is developed considering the aforementioned parameters, which is a mixed integer program, and applied to Bangalore Metropolitan Transport Corporation (BMTC) routes operating presently in order to obtain optimal bus allocation to depots. Database for dead kilometers of depots in BMTC for all the schedules are generated using the Form-4 (trip sheet) of each schedule to analyze depot-wise and division-wise dead kilometers. This study also suggests alternative locations where depots can be located to reduce dead kilometers. Copyright (C) 2015 John Wiley & Sons, Ltd.
Resumo:
The study considers earthquake shake table testing of bending-torsion coupled structures under multi-component stationary random earthquake excitations. An experimental procedure to arrive at the optimal excitation cross-power spectral density (psd) functions which maximize/minimize the steady state variance of a chosen response variable is proposed. These optimal functions are shown to be derivable in terms of a set of system frequency response functions which could be measured experimentally without necessitating an idealized mathematical model to be postulated for the structure under study. The relationship between these optimized cross-psd functions to the most favourable/least favourable angle of incidence of seismic waves on the structure is noted. The optimal functions are also shown to be system dependent, mathematically the sharpest, and correspond to neither fully correlated motions nor independent motions. The proposed experimental procedure is demonstrated through shake table studies on two laboratory scale building frame models.
Resumo:
A new method of selection of time-to-go (t(go)) for Generalized Vector Explicit Guidance (GENEX) law have been proposed in this paper. t(go) is known to be an important parameter in the control and cost function of GENEX guidance law. In this paper the formulation has been done to find an optimal value of t(go) that minimizes the performance cost. Mechanization of GENEX with this optimal t(go) reduces the lateral acceleration demand and consequently increases the range of the interceptor. This new formulation of computing t(go) comes in closed form and thus it can be implemented onboard. This new formulation is applied in the terminal phase of an surface-to-air interceptor for an angle constrained engagement. Results generated by simulation justify the use of optimal t(go).
Resumo:
A fuel optimal nonlinear sub-optimal guidance scheme is presented in this paper for soft landing of a lunar craft during the powered descent phase. The recently developed Generalized Model Predictive Static Programming (G-MPSP) is used to compute the required magnitude and angle of the thrust vector. Both terminal position and velocity vector are imposed as hard constraints, which ensures high position accuracy and facilitates initiation of vertical descent at the end of the powered descent phase. A key feature of the G-MPSP algorithm is that it converts the nonlinear dynamic programming problem into a low-dimensional static optimization problem (of the same dimension as the output vector). The control history update is done in closed form after computing a time-varying weighting matrix through a backward integration process. This feature makes the algorithm computationally efficient, which makes it suitable for on-board applications. The effectiveness of the proposed guidance algorithm is demonstrated through promising simulation results.
Resumo:
The present work deals with the structural and efficient down-shifting (DS) and up-conversion (UC) luminescence properties of erbium ion (Er3+) doped nanocrystalline barium sodium niobate (Ba2Na1-3xErxNb5O15, where x = 0, 0.02, 0.04 and 0.06) powders synthesized via novel citrate-based sol-gel route. The monophasic nature of the title compound was confirmed via x-ray powder diffraction followed by FT-IR studies. High-resolution transmission electron microscopy (HRTEM) facilitated the establishment of the nanocrystalline phase and the morphology of the crystallites. The Kubelka-Munk function, based on diffused reflectance studies and carried out on nano-sized crystallites, was employed to obtain the optical band-gap. The synthesized nanophosphor showed efficient DS/PL-photoluminescence and UC luminescence properties, which have not yet been reported so far in this material. The material emits intense DS green emission on excitation with 378 nm radiation. Interestingly, the material gives intense UC emission in the visible region dominated by green emission and relatively weak red emission on 976 nm excitation (NIR laser excitation). Such a dual-mode emitting nanophosphor could be very useful in display devices and for many other applications.
Resumo:
We study the optimal control problem of maximizing the spread of an information epidemic on a social network. Information propagation is modeled as a susceptible-infected (SI) process, and the campaign budget is fixed. Direct recruitment and word-of-mouth incentives are the two strategies to accelerate information spreading (controls). We allow for multiple controls depending on the degree of the nodes/individuals. The solution optimally allocates the scarce resource over the campaign duration and the degree class groups. We study the impact of the degree distribution of the network on the controls and present results for Erdos-Renyi and scale-free networks. Results show that more resource is allocated to high-degree nodes in the case of scale-free networks, but medium-degree nodes in the case of Erdos-Renyi networks. We study the effects of various model parameters on the optimal strategy and quantify the improvement offered by the optimal strategy over the static and bang-bang control strategies. The effect of the time-varying spreading rate on the controls is explored as the interest level of the population in the subject of the campaign may change over time. We show the existence of a solution to the formulated optimal control problem, which has nonlinear isoperimetric constraints, using novel techniques that is general and can be used in other similar optimal control problems. This work may be of interest to political, social awareness, or crowdfunding campaigners and product marketing managers, and with some modifications may be used for mitigating biological epidemics.
Resumo:
In this paper the soft lunar landing with minimum fuel expenditure is formulated as a nonlinear optimal guidance problem. The realization of pinpoint soft landing with terminal velocity and position constraints is achieved using Model Predictive Static Programming (MPSP). The high accuracy of the terminal conditions is ensured as the formulation of the MPSP inherently poses final conditions as a set of hard constraints. The computational efficiency and fast convergence make the MPSP preferable for fixed final time onboard optimal guidance algorithm. It has also been observed that the minimum fuel requirement strongly depends on the choice of the final time (a critical point that is not given due importance in many literature). Hence, to optimally select the final time, a neural network is used to learn the mapping between various initial conditions in the domain of interest and the corresponding optimal flight time. To generate the training data set, the optimal final time is computed offline using a gradient based optimization technique. The effectiveness of the proposed method is demonstrated with rigorous simulation results.
Resumo:
Crowd flow segmentation is an important step in many video surveillance tasks. In this work, we propose an algorithm for segmenting flows in H.264 compressed videos in a completely unsupervised manner. Our algorithm works on motion vectors which can be obtained by partially decoding the compressed video without extracting any additional features. Our approach is based on modelling the motion vector field as a Conditional Random Field (CRF) and obtaining oriented motion segments by finding the optimal labelling which minimises the global energy of CRF. These oriented motion segments are recursively merged based on gradient across their boundaries to obtain the final flow segments. This work in compressed domain can be easily extended to pixel domain by substituting motion vectors with motion based features like optical flow. The proposed algorithm is experimentally evaluated on a standard crowd flow dataset and its superior performance in both accuracy and computational time are demonstrated through quantitative results.