423 resultados para linear measurements
Resumo:
A methodology is presented for the synthesis of analog circuits using piecewise linear (PWL) approximations. The function to be synthesized is divided into PWL segments such that each segment can be realized using elementary MOS current-mode programmable-gain circuits. A number of these elementary current-mode circuits when connected in parallel, it is possible to realize piecewise linear approximation of any arbitrary analog function with in the allowed approximation error bounds. Simulation results show a close agreement between the desired function and the synthesized output. The number of PWL segments used for approximation and hence the circuit area is determined by the required accuracy and the smoothness of the resulting function.
Resumo:
We consider a time varying wireless fading channel, equalized by an LMS linear equalizer. We study how well this equalizer tracks the optimal Wiener equalizer. We model the channel by an Auto-regressive (AR) process. Then the LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs (ordinary differential equations). Using these ODEs, the error between the LMS equalizer and the instantaneous Wiener filter is shown to decay exponentially/polynomially to zero unless the channel is marginally stable in which case the convergence may not hold.Using the same ODEs, we also show that the corresponding Mean Square Error (MSE) converges towards minimum MSE(MMSE) at the same rate for a stable channel. We further show that the difference between the MSE and the MMSE does not explode with time even when the channel is unstable. Finally we obtain an optimum step size for the linear equalizer in terms of the AR parameters, whenever the error decay is exponential.
Resumo:
With the introduction of 2D flat-panel X-ray detectors, 3D image reconstruction using helical cone-beam tomography is fast replacing the conventional 2D reconstruction techniques. In 3D image reconstruction, the source orbit or scanning geometry should satisfy the data sufficiency or completeness condition for exact reconstruction. The helical scan geometry satisfies this condition and hence can give exact reconstruction. The theoretically exact helical cone-beam reconstruction algorithm proposed by Katsevich is a breakthrough and has attracted interest in the 3D reconstruction using helical cone-beam Computed Tomography.In many practical situations, the available projection data is incomplete. One such case is where the detector plane does not completely cover the full extent of the object being imaged in lateral direction resulting in truncated projections. This result in artifacts that mask small features near to the periphery of the ROI when reconstructed using the convolution back projection (CBP) method assuming that the projection data is complete. A number of techniques exist which deal with completion of missing data followed by the CBP reconstruction. In 2D, linear prediction (LP)extrapolation has been shown to be efficient for data completion, involving minimal assumptions on the nature of the data, producing smooth extensions of the missing projection data.In this paper, we propose to extend the LP approach for extrapolating helical cone beam truncated data. The projection on the multi row flat panel detectors has missing columns towards either ends in the lateral direction in truncated data situation. The available data from each detector row is modeled using a linear predictor. The available data is extrapolated and this completed projection data is backprojected using the Katsevich algorithm. Simulation results show the efficacy of the proposed method.
Resumo:
Electrical transport measurements on ultrathin single-crystalline Au nanowires, synthesized via a wet chemical route, show an unexpected insulating behavior. The linear response electrical resistance exhibits a power-law dependence on temperature. In addition, the variation of current over a wide range of temperature and voltage obeys a universal scaling relation that provides compelling evidence for a non-Fermi liquid behavior. Our results demonstrate that the quantum ground state In ultrathin nanowires of simple metallic systems can be radically different from their bulk counterparts and can be described In terms of a Tomonaga-Luttinger liquid (TLL), in the presence of remarkably strong electron-electron interactions.
Resumo:
Relation between X-ray scattering intensities, mean square thermal fluctuations and thermodynamic properties. High temperature X-ray diffraction study of liquid Fe-Ni and Fe-Si alloys using reflection and transmission geometries. Calculation of the structure factor as a function of wave vector. Extrapolation to zero wave vector. Calculation of the concentration-concentration correlation function defined by A. B. Bhatia and D. E. Thorton. Computation of thermodynamic quantities of mixing A G, LlH and LlS for the binary alloys. Comparison with direct thermodynamic measurements reported in the literature.
Resumo:
Specific heat, resistivity, magnetic susceptibility, linear thermal expansion (LTE), and high-resolution synchrotron x-ray powder diffraction investigations of single crystals Fe(1+y) Te (0.06 <= y <= 0.15) reveal a splitting of a single, first-order transition for y <= 0.11 into two transitions for y >= 0.13. Most strikingly, all measurements on identical samples Fe(1.13)Te consistently indicate that, upon cooling, the magnetic transition at T(N) precedes the first-order structural transition at a lower temperature T(s). The structural transition in turn coincides with a change in the character of the magnetic structure. The LTE measurements along the crystallographic c axis display a small distortion close to T(N) due to a lattice striction as a consequence of magnetic ordering, and a much larger change at T(s). The lattice symmetry changes, however, only below T(s) as indicated by powder x-ray diffraction. This behavior is in stark contrast to the sequence in which the phase transitions occur in Fe pnictides.
Resumo:
The open circuit potentials of the galvanic cell,Pt (or Au)¦(Ar + H2S + H2)primeparCaS + ZrO2(CaO)par (Ar + H2S+ H2)Prime£t (or Au) has been measured in the temperature range 1000 to 1660 K and PH2S:PH 2 ratios from 1.73×10–5 to 2.65×10–1. The solid electrolyte consists of a dispersion of calcium sulphide in a matrix of calcia-stabilized zirconia. The surface of the electrolyte is coated with a thin layer of calcium sulphide to prevent the formation of water vapour by reaction of hydrogen sulphide with calcium oxide or zirconia present in the electrolyte. The use of a lsquopoint electrodersquo with a catalytically active tip was necessary to obtain steady emfs. At low temperatures and high sulphur potentials the emfs agreed with the Nernst equation. Deviations were observed at high temperatures and low sulphur potentials, probably due to the onset of significant electronic conduction in the oxide matrix of the electrolyte. The values of oxygen and sulphur potentials at which the electronic conductivity is equal to ionic conductivity in the two-phase electrolyte have been evaluated from the emf response of the cell. The sulphide-oxide electrolyte is unsuitable for sulphur potential measurements in atmospheres with high oxygen potentials, where oxidation of calcium sulphide may be expected.
Resumo:
The equilibrium partial pressures of Mn over bcc Cr--Mn alloys have been measured using Knudsen cell technique in the temp. range 1200-1500K. The alloys in particulate form were contained in thoria crucibles inside Knudsen cells made of tungsten. The rates of mass loss of each cell under vacuum was monitered as a function of time at constant temp. using a microbalance. Activities exhibit mild negative deviations from Raoult's law, contrary to indications from an earlier study using a fused salt emf technique. The Cr--Mn system is characterized by negative enthalpy and excess entropy of mixing. There is close similarity between the composition dependence of enthalpy and excess entropy. These findings suggest strong vibrational and negligible magnetic contributions to excess entropy of mixing in bcc phase at high temp. 10 ref.--AA
Resumo:
The critical properties of orthorhombic Pr(0.6)Sr(0.4)MnO(3) single crystals were investigated by a series of static magnetization measurements along the three different crystallographic axes as well as by specific heat measurements. A careful range-of-fitting-analysis of the magnetization and susceptibility data obtained from the modified Arrott plots shows that Pr(0.6)Sr(0.4)MnO(3) has a very narrow critical regime. Nevertheless, the system belongs to the three-dimensional (3D) Heisenberg universality class with short-range exchange. The critical exponents obey Widom scaling and are in excellent agreement with the single scaling equation of state M(H,epsilon) = vertical bar epsilon vertical bar(beta) f(+/-)(H/vertical bar epsilon vertical bar((beta+gamma)); with f(+) for T > T(c) and f(-) for T < T(c). A detailed analysis of the specific heat that account for all relevant contributions allows us to extract and analyze the contribution related to the magnetic phase transition. The specific heat indicates the presence of a linear electronic term at low temperatures and a prominent contribution from crystal field excitations of Pr. A comparison with data from literature for PrMnO(3) shows that a Pr-Mn magnetic exchange is responsible for a sizable shift in the lowest lying excitation.