372 resultados para NUCLEAR CHEMISTRY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

for selectively targeting cancer cells. Herein, we report the design and evolution of a new kind of carbazole-based benzimidazole dimers for their efficient telomerase inhibition activity. Spectroscopic titrations reveal the ligands high affinity toward the G4 DNA with significantly higher selectivity over duplex-DNA. The electrophoretic mobility shift assay shows that the ligands efficiently promote the formation of 04 DNA even at a lower concentration of the stabilizing K+ ions. The TRAP-LIG assay demonstrates the ligand's potential telomerase inhibition activity and also establishes that the activity proceeds via G4 DNA stabilization. An efficient nuclear internalization of the ligands in several common cancer cells (HeLa, HT1080, and A549) also enabled differentiation between normal HFF cells in co-cultures of cancer and normal ones. The ligands induce significant apoptotic response and antiproliferative activity toward cancer cells selectively when compared to the normal cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes VO(pyphen)Cl-2] (1) and VO(pydppz)Cl-2] (2), where pyphen is 2-(2-pyridyl)-1,10-phenanthroline and pydppz is 3-(pyridin-2-yl)dipyrido3,2-a:2,3-c]phenazine, show remarkable photoinduced DNA crosslinking ability and photocytotoxicity. The complexes are non-electrolytes in DMF, 1:1 electrolytes in 20% aqueous DMF, and 1:2 electrolytes in 20% aqueous DMF upon photoirradiation with visible light of 400-700 nm. The paramagnetic complexes, which have one unpaired electron, show a d-d band near 780 nm in aqueous DMF. The IR data suggest a V=O moiety trans to a V-N bond. Complex VO(pydppz)Cl-2] (2), as a novel photoinducible nuclear ds-DNA crosslinking agent, shows visible-light-induced cytotoxicity in HeLa and MCF-7 cancer cells by an apoptotic pathway, giving IC50 values of 0.87 +/- 0.07 and 1.4 +/- 0.2 M, respectively, while being essentially nontoxic (IC50 > 40 M) in the dark and less toxic in normal MCF-10A cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbulence-transport-chemistry interaction plays a crucial role on the flame surface geometry, local and global reactionrates, and therefore, on the propagation and extinction characteristics of intensely turbulent, premixed flames encountered in LPP gas-turbine combustors. The aim of the present work is to understand these interaction effects on the flame surface annihilation and extinction of lean premixed flames, interacting with near isotropic turbulence. As an example case, lean premixed H-2-air mixture is considered so as to enable inclusion of detailed chemistry effects in Direct Numerical Simulations (DNS). The work is carried out in two phases namely, statistically planar flames and ignition kernel, both interacting with near isotropic turbulence, using the recently proposed Flame Particle Tracking (FPT) technique. Flame particles are surface points residing and commoving with an iso-scalar surface within a premixed flame. Tracking flame particles allows us to study the evolution of propagating surface locations uniquely identified with time. In this work, using DNS and FPT we study the flame speed, reaction rate and transport histories of such flame particles residing on iso-scalar surfaces. An analytical expression for the local displacement flame speed (SO is derived, and the contribution of transport and chemistry on the displacement flame speed is identified. An examination of the results of the planar case leads to a conclusion that the cause of variation in S-d may be attributed to the effects of turbulent transport and heat release rate. In the second phase of this work, the sustenance of an ignition kernel is examined in light of the S-curve. A newly proposed Damkohler number accounting for local turbulent transport and reaction rates is found to explain either the sustenance or otherwise propagation of flame kernels in near isotropic turbulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesophase organization of molecules built with thiophene at the center and linked via flexible spacers to rigid side arm core units and terminal alkoxy chains has been investigated. Thirty homologues realized by varying the span of the spacers as well as the length of the terminal chains have been studied. In addition to the enantiotropic nematic phase observed for all the mesogens, the increase of the spacer as well as the terminal chain lengths resulted in the smectic C phase. The molecular organization in the smectic phase as investigated by temperature dependent X-ray diffraction measurements revealed an interesting behavior that depended on the length of the spacer vis-a-vis the length of the terminal chain. Thus, a tilted interdigitated partial bilayer organization was observed for molecules with a shorter spacer length, while a tilted monolayer arrangement was observed for those with a longer spacer length. High-resolution solid state C-13 NMR studies carried out for representative mesogens indicated a U-shape for all the molecules, indicating that intermolecular interactions and molecular dynamics rather than molecular shape are responsible for the observed behavior. Models for the mesophase organization have been considered and the results understood in terms of segregation of incompatible parts of the mesogens combined with steric frustration leading to the observed lamellar order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new monoclinic polymorph, form II (P2(1)/c, Z = 4), has been isolated for 3,4-dimethoxycinnamic acid (DMCA). Its solid-state 2 + 2 photoreaction to the corresponding alpha-truxillic acid is different from that of the first polymorph, the triclinic form I (P (1) over bar, Z = 4) that was reported in 1984. The crystal structures of the two forms are rather different. The two polymorphs also exhibit different photomechanical properties. Form I exhibits photosalient behavior but this effect is absent in form II. These properties can be explained on the basis of the crystal packing in the two forms. The nanoindentation technique is used to shed further insights into these structure-property relationships. A faster photoreaction in form I and a higher yield in form II are rationalized on the basis of the mechanical properties of the individual crystal forms. It is suggested that both Schmidt-type and Kaupp-type topochemistry are applicable for the solid-state trans-cinnamic acid photodimerization reaction. Form I of DMCA is more plastic and seems to react under Kaupp-type conditions with maximum molecular movements. Form II is more brittle, and its interlocked structure seems to favor Schmidt-type topochemistry with minimum molecular movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress due to excessive accumulation of reactive oxygen or nitrogen species in the brain as seen in certain neurodegenerative diseases can have deleterious effects on neurons. Hydrogen peroxide, endogenously generated in neurons under normal physiological conditions, can produce an excess of hydroxyl radical via a Fenton mediated mechanism. This may induce acute oxidative injury if not scavenged or removed effectively by antioxidants. There are several biochemical assay methods to estimate oxidative injury in cells; however, they do not provide information on the biochemical changes as the cells get damaged progressively under oxidative stress. Raman microspectroscopy offers the possibility of real time monitoring of the chemical composition of live cells undergoing oxidative stress under physiological conditions. In the present study, a hippocampal neuron coculture was used to observe the acute impact of hydroxyl radicals generated by hydrogen peroxide in the presence of Fe2+ (Fenton reaction). Raman peaks related to nucleic acids (725, 782, 1092, 1320, 1340, 1420, and 1576 cm(-1)) showed time-dependent changes over the experimental period (60 mm), indicating the breakdown of the phosphodiester backbone as well as nuclear bases. Interestingly, ascorbic acid (a potent antioxidant) when cotreated with Fenton reactants showed protection of cells as inferred from the Raman spectra, presumably by scavenging hydroxyl radicals. Little or no change in the Raman spectra was observed for untreated control cells and for cells exposed to Fe2+ only, H2O2 only, and ascorbate only. A live dead assay study also supported the current observations. Hence, Raman microspectroscopy has the potential to be an excellent noninvasive tool for early detection of oxidative stress that is seen in neurodegenerative diseases.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen-air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen-air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (S-d) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in S-d is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol loading over the South Asian region has the potential to affect the monsoon rainfall, Himalayan glaciers and regional air-quality, with implications for the billions in this region. While field campaigns and network observations provide primary data, they tend to be location/season specific. Numerical models are useful to regionalize such location-specific data. Studies have shown that numerical models underestimate the aerosol scenario over the Indian region, mainly due to shortcomings related to meteorology and the emission inventories used. In this context, we have evaluated the performance of two such chemistry-transport models: WRF-Chem and SPRINTARS over an India-centric domain. The models differ in many aspects including physical domain, horizontal resolution, meteorological forcing and so on etc. Despite these differences, both the models simulated similar spatial patterns of Black Carbon (BC) mass concentration, (with a spatial correlation of 0.9 with each other), and a reasonable estimates of its concentration, though both of them under-estimated vis-a-vis the observations. While the emissions are lower (higher) in SPRINTARS (WRF-Chem), overestimation of wind parameters in WRF-Chem caused the concentration to be similar in both models. Additionally, we quantified the under-estimations of anthropogenic BC emissions in the inventories used these two models and three other widely used emission inventories. Our analysis indicates that all these emission inventories underestimate the emissions of BC over India by a factor that ranges from 1.5 to 2.9. We have also studied the model simulations of aerosol optical depth over the Indian region. The models differ significantly in simulations of AOD, with WRF-Chem having a better agreement with satellite observations of AOD as far as the spatial pattern is concerned. It is important to note that in addition to BC, dust can also contribute significantly to AOD. The models differ in simulations of the spatial pattern of mineral dust over the Indian region. We find that both meteorological forcing and emission formulation contribute to these differences. Since AOD is column integrated parameter, description of vertical profiles in both models, especially since elevated aerosol layers are often observed over Indian region, could be also a contributing factor. Additionally, differences in the prescription of the optical properties of BC between the models appear to affect the AOD simulations. We also compared simulation of sea-salt concentration in the two models and found that WRF-Chem underestimated its concentration vis-a-vis SPRINTARS. The differences in near-surface oceanic wind speeds appear to be the main source of this difference. In-spite of these differences, we note that there are similarities in their simulation of spatial patterns of various aerosol species (with each other and with observations) and hence models could be valuable tools for aerosol-related studies over the Indian region. Better estimation of emission inventories could improve aerosol-related simulations. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ADP-ribose) polymerase (PARP) is a critical nuclear enzyme which safeguards genome stability from genotoxic insults and helps in DNA repair. Inhibition of PARP results in sustained DNA damage in cancer cells. PARP inhibitors are known to play an important role in chemotherapy as single agents in many DNA repair pathway deficient tumor cells or in combination with several other chemotherapeutic agents. In the present study, we synthesize and characterize novel pyridazine derivatives, and evaluate their potential for use as PARP inhibitors. Results show that pyridazine derivatives inhibited the PARP1 enzymatic activity at the nanomolar range and showed anti-proliferative activity in leukemic cells. Interestingly, human leukemic cell line, Nalm6, in which PARP1 and PARP2 expression as well as intrinsic PARP activity are high, showed significant sensitivity for the novel inhibitors compared to other leukemic cells. Among the inhibitors, P10 showed maximum inhibition of intrinsic PARP activity and inhibited cell proliferation in Nalm6 cells. Besides P10 also showed maximum inhibition against purified PARP1 protein, which was comparable to olaparib in our assays. Newly synthesized compounds also showed remarkable DNA trapping ability, which is a signature feature of many PARP inhibitors. Importantly, P10 also induced late S and G2/M arrest in Nalm6 cells, indicating accumulation of DNA damage. Therefore, we identify P10 as a potential PARP inhibitor, which can be developed as a chemotherapeutic agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports a multinuclei in situ (real-time) NMR spectroscopic characterization of the electrochemical reactions of a negative Cu3P electrode toward lithium. Taking advantage of the different nuclear spin characteristics, we have obtained real-time P-31 and Li-7 NMR data for a comprehensive understanding of the electrochemical mechanism during the discharge and charge processes of a lithium battery. The large NMR chemical shift span of P-31 facilitates the observation of the chemical evolutions of different lithiated and delithiated LixCu3-xP phases, whereas the quadrupolar line features in Li-7 enable identification of asymmetric Li sites. These combined NMR data offer an unambiguous identification of four distinct LixCu3-xP phases, Cu3P, Li0.2Cu2.8P, Li2CuP, and. Li3P, and the characterization of their involvement in the electrochemical reactions. The NMR data led us to propose a delithiation process involving the intercalation of metallic Cu-0 atomic aggregates into the Li2CuP structure to form a Cu-0-Li2-xCu1-xP phase. This process might be responsible for the poor capacity retention in Cu3P lithium batteries when cycled to a low voltage.