400 resultados para Metallic nanocontacts


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An in situ carbon-grafted alkaline iron electrode prepared from the active material obtained by decomposing the alpha-FeC2O4 center dot 2H(2)O-polyvinyl alcohol (PVA) composite at 600 degrees C in a vacuum is reported. The active material comprises a mixture of a-Fe and Fe3O4 with the former as the prominent component. A specific discharge capacity in excess of 400 mA h g(-1) at a current density of 100 mA g(-1) is obtained with a faradaic efficiency of 80% for the iron electrode made from carbon-grafted active material (CGAM). The enhanced performance of the alkaline iron electrode is attributed to the increased amount of metallic iron in the active material and its concomitant in situ carbon grafting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origin of a high Neel temperature in a 5d oxide, NaOsO3, has been analyzed within the mean-field limit of a multiband Hubbard model and compared with the analogous 4d oxide, SrTcO3. Our analysis shows that there are a lot of similarities in both of these oxides on the dependence of the effective exchange interaction strength (J(0)) on the electron-electron interaction strength ( U). However, the relevant value of U in each system puts them in different portions of the parameter space. Although the Neel temperature for NaOsO3 is less than that for SrTcO3, our results suggest that there could be examples among other 5d oxides that have a higher Neel temperature. We have also examined the stability of the G-type antiferromagnetic state found in NaOsO3 as a function of electron doping within GGA + U calculations and find a robust G-type antiferromagnetic metallic state stabilized. The most surprising aspect of the doped results is the rigid bandlike evolution of the electronic structure, which indicates that the magnetism in NaOsO3 is not driven by Fermi surface nesting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis and physical property characterization of Prfe(1-x)Co(x)AsO (x=0.0-1.0). The studied samples are synthesized by through the solid state reaction route via the vacuum encapsulation method. The pristine compound PrFeAsO does not show superconductivity, but rather exhibits a metallic step like transition due to spin density wave (SOW) ordering of Fe moments (Fe-SDW) below 150 K, Followed by another upward step due to anomalous ordering of Pr moments (Pr-TN) at 12 K. Both the Fe-SDW and Pr-TN temperatures decrease monotonically with Co substitution at Fe site Superconductivity appears in a narrow range of x from 0.07 to 0.25 with maximum T-c at 11.12 K for x=0.15. Samples with x >= 0.25 exhibit metallic behavior right from 300 K down to 2 K, without any Fe-SDW or Pr-TN steps in resistivity. In fact, though Fe-SDW decreases monotonically, the pr(TN) disappeared even with x=0.02. The magneto transport measurements below 14 Ton superconducting polycrystalline Co doped Pi FeAs0 lead to extrapolated values of the upper critical fields H-c2(0)] of up to 60 T. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semiconducting Cu3BiS3 (CBS) thin films were deposited by co-evaporation of Cu, Bi elemental metallic precursors, with in situ sulphurisation, using a quartz effusion cell. Cu3BiS3 thin films were structurally characterized by XRD and FE-SEM. The chemical bonding of the ions was examined by XPS. As deposited films were demonstrated for metal-semiconductor-metal near IR photodectection under lamp and laser illuminations. The photo current amplified to three orders and two orders of magnitude upon the IR lamp and 60 m W cm(-2) 1064 nm IR laser illuminations, respectively. Larger grains, made up of nano needle bunches aided the transport of carriers. Transport properties were explained based on the trap assisted space charge conduction mechanism. Steady state detector parameters like responsivity varied from 1.04 AW(-1) at 60 m Wcm(-2) to 0.22 AW(-1) at 20 m Wcm(-2). Detector sensitivity of 295 was found to be promising and further could be tuned for better responsivity and efficiency in utilization of near infra-red photodetector. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of high electric-field between two points in a thin metallic film results in liquefaction and subsequent flow of the liquid-film from one electrode to another in a radially symmetric fashion. Here, we report the transition of the flow kinetics driven by the liquid film thickness varying from 3 to 100 nm. The mechanism of the flow behavior is observed to be independent of the film thickness; however, the kinetics of the flow depends on the film thickness and the applied voltage. An analytical model, incorporating viscosity and varying electrical resistivity with film thickness, is developed to explain the experimental observations. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spin injection, manipulation and detection are the integral parts of spintronics devices and have attracted tremendous attention in the last decade. It is necessary to judiciously choose the right combination of materials to have compatibility with the existing semiconductor technology. Conventional metallic magnets were the first choice for injecting spins into semiconductors in the past. So far there is no success in using a magnetic oxide material for spin injection, which is very important for the development of oxide based spintronics devices. Here we demonstrate the electrical spin injection from an oxide magnetic material Fe3O4, into GaAs with the help of tunnel barrier MgO at room temperature using 3-terminal Hanle measurement technique. A spin relaxation time tau similar to 0.9 ns for n-GaAs at 300 K is observed along with expected temperature dependence of t. Spin injection using Fe3O4/MgO system is further established by injecting spins into p-GaAs and a tau of similar to 0.32 ns is obtained at 300 K. Enhancement of spin injection efficiency is seen with barrier thickness. In the field of spin injection and detection, our work using an oxide magnetic material establishes a good platform for the development of room temperature oxide based spintronics devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Differential mobility analyzers (DMAs) are commonly used to generate monodisperse nanoparticle aerosols. Commercial DMAs operate at quasi-atmospheric pressures and are therefore not designed to be vacuum-tight. In certain particle synthesis methods, the use of a vacuum-compatible DMA is a requirement as a process step for producing high-purity metallic particles. A vacuum-tight radial DMA (RDMA) has been developed and tested at low pressures. Its performance has been evaluated by using a commercial NANO-DMA as the reference. The performance of this low-pressure RDMA (LP-RDMA) in terms of the width of its transfer function is found to be comparable with that of other NANO-DMAs at atmospheric pressure and is almost independent of the pressure down to 30 mbar. It is shown that LP-RDMA can be used for the classification of nanometer-sized particles (5-20 nm) under low pressure condition (30 mbar) and has been successfully applied to nanoparticles produced by ablating FeNi at low pressures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patterning nanostructures on flexible substrates plays a key role in the emerging flexible electronics technology. The flexible electronic devices are inexpensive and can be conformed to any shape. The potential applications for such devices are sensors, displays, solar cells, RFID, high-density biochips, optoelectronics etc. E-beam lithography is established as a powerful tool for nanoscale fabrication, but its applicability on insulating flexible substrates is often limited because of surface charging effects. This paper presents the fabrication of nanostructures on insulating flexible substrates using low energy E-beam lithography along with metallic layers for charge dissipation. Nano Structures are patterned on different substrates of materials such as acetate and PET foils. The fabrication process parameters such as the proximity gap of exposure, the exposure dosage and developing conditions have been optimized for each substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interaction between the lattice and the orbital degrees of freedom not only makes rare-earth nickelates unusually ``bad metal,'' but also introduces a temperature-driven insulator-metal phase transition. Here we investigate this insulator-metal phase transition in thin films of SmNiO3 using the slow time-dependent fluctuations (noise) in resistivity. The normalized magnitude of noise is found to be extremely large, being nearly eight orders of magnitude higher than thin films of common disordered metallic systems, and indicates electrical conduction via classical percolation in a spatially inhomogeneous medium. The higher-order statistics of the fluctuations indicate a strong non-Gaussian component of noise close to the transition, attributing the inhomogeneity to the coexistence of the metallic and insulating phases. Our experiment offers insight into the impact of lattice-orbital coupling on the microscopic mechanism of electron transport in the rare-earth nickelates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variation of electrical resistivity in the system of glasses Ge17Te83-xTlx, with (1 <= x <= 13), has been studied as a function of high pressure for pressures up to 10 GPa. It is found that the normalized electrical resistivity decreases continuously with the increase in pressure and shows a sudden drop at a particular pressure (transition pressure), indicating the presence of a transition from semiconductor to near-metallic at these pressures which are in the range 3.0-5.0 GPa. This transition pressure is seen to decrease with the increase in the percentage content of thallium due to increasing metallicity of the thallium. The transition is reversible under application of pressure and X-ray diffraction of samples recovered after pressurization show that they remain amorphous after undergoing a pressurization decompression cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cold atomic realization of a quantum correlated state of many fermions on a lattice, eg. superfluid, has eluded experimental realization due to the entropy problem. Here we propose a route to realize such a state using holographic lattice and confining potentials. The potentials are designed to produces aband insulating state (low heat capacity) at the trap center, and a metallic state (high heat capacity) at the periphery. The metal ``cools'' the central band insulator by extracting out the excess entropy. The central band insulator can be turned into a superfluid by tuning an attractive interaction between the fermions. Crucially, the holographic lattice allows the emergent superfluid to have a high transition temperature - even twice that of the effective trap temperature. The scheme provides a promising route to a laboratory realization of a fermionic lattice superfluid, even while being adaptable to simulate other many body states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on Raman and Ni K-edge x-ray absorption investigations of a NiS2-xSex (with x = 0.00, 0.50/0.55, 0.60, and 1.20) pyrite family. The Ni K-edge absorption edge shows a systematic shift going from an insulating phase (x = 0.00 and 0.50) to a metallic phase (x = 0.60 and 1.20). The near-edge absorption features show a clear evolution with Se doping. The extended x-ray absorption fine structure data reveal the evolution of the local structure with Se doping which mainly governs the local disorder. We also describe the decomposition of the NiS2-xSex Raman spectra and investigate the weights of various phonon modes using Gaussian and Lorentzian profiles. The effectiveness of the fitting models in describing the data is evaluated by means of Bayes factor estimation. The Raman analysis clearly demonstrates the disorder effects due to Se alloying in describing the phonon spectra of NiS2-xSex pyrites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supported metallic nanoparticles are important composite materials owing to their enormous potential for applications in various fields. In this work, palladium nanoparticles were prepared in situ in a calcium-cholate (Ca-Ch) hydrogel by reduction with sodium cyanoborohydride. The hydrogel matrix appeared to assist the controlled growth as well as stabilization of palladium nanoparticles. The palladium nanoparticle/Ca-Ch hydrogel hybrid was characterized by scanning and transmission electron microscopy, atomic force microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. Furthermore, the PdNP/Ca-Ch hybrid xerogel was shown to act as an active catalyst for the Suzuki reaction under aqueous aerobic conditions. The PdNP/Ca-Ch xerogel retains its catalytic activities on storage for several months.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The retention of the desired combination of mechanical/tribological properties in ultrafine grained materials presents important challenges in the field of bulk metallic composites. In order to address this aspect, the present work demonstrates how one can achieve a good combination of hardness and wear resistance in Cu-Pb-TiB2 composites, consolidated by spark plasma sintering at low temperatures ( < 500 degrees C). Transmission electron microscope (TEM) studies reveal ultrafine grains of Cu (100-400 nm) with coarser TiB2 particles (1-2 mu m) along with fine scale Pb dispersoid at triple junctions or at the grain boundaries of Cu. Importantly, a high hardness of around 2.2 GPa and relative density of close to 90% relative density (rho(theo)) have been achieved for Cu-15 wt% TiB2-10 wt% Pb composite. Such property theo, combination has never been reported for any Cu-based nanocomposite, by conventional processing route. In reference to the tribological performance, fretting wear tests were conducted on the sintered nanocomposites and a good combination of steady state COF (0.6-0.7) and wear rate (10-4 mm(3)/N m) were measured. An inverse relationship between wear rate and hardness was recorded and this commensurates well with Archard's relationship of abrasive wear. The formation of a wear-resistant delaminated tribolayer consisting of TiB2 particles and ultrafine oxide debris, (Cu, Fe, Ti)(x)O-y as confirmed from subsurface imaging using focused ion beam microscopy has been identified as the key factors for the low wear rate of these composites. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of absorbed hydrogen on the mechanical behavior of a series of Ni-Nb-Zr amorphous metallic ribbons was investigated through nanoindentation experiments. It was revealed that the influence is significantly dependent on Zr content, that is, hydrogen induced softening in relatively low-Zr alloys, whereas hydrogen induced hardening in high-Zr alloys. The results are discussed in terms of the different roles of mobile and immobile hydrogen in the plastic deformation. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.