498 resultados para Langmuir-blodgett-films
Resumo:
This study deals with tailoring of the surface morphology, microstructure, and electrochemical properties of Sn thin films deposited by magnetron sputtering with different deposition rates. Scanning electron microscopy and atomic force microscopy are used to characterize the film surface morphology. Electrochemical properties of Sn thin film are measured and compared by cyclic voltammetry and charge-discharge cycle data at a constant current density. Sn thin film fabricated with a higher deposition rate exhibited an initial discharge capacity of 798 mAh g(-1) but reduced to 94 mAh g(-1) at 30th cycle. Film deposited with lower deposition rate delivered 770 mAh g(-1) during 1st cycle with improved capacity retention of 521 mAh g(-1) on 30th cycle. Comparison of electrochemical performances of these films has revealed important distinctions, which are associated with the surface morphology and hence on rate of deposition. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Titanium-carbon (Ti-C) thin films of different compositions were prepared by a combination of pulsed DC (for Ti target) and normal DC (for graphite target) magnetron co-sputtering on oxidized silicon and fused quartz substrates. At 33.7 at.% of C content, pure hcp Ti transforms into fcc-TiC with a preferential orientation of (2 2 0) along with (1 1 1) and (2 0 0). A clear transformation in the preferential orientation from (2 2 0) to (1 1 1) has been observed when the C content was increased to 56 at.%. At 62.5 at.% of C, TiC precipitates in an amorphous carbon matrix whereas further increase in C leads to X-ray amorphous films. The cross-sectional scanning electron microscope images reveal that the films with low carbon content consists of columnar grains, whereas, randomly oriented grains are in an amorphous carbon matrix at higher carbon content. A dramatic variation was observed in the mechanical properties such as hardness, H, from 30 to 1 GPa and in modulus, E, from 255 to 25 GPa with varying carbon content in the films. Resistance to plastic deformation parameter was observed as 0.417 for films containing 62.5 at.% of C. Nanoscratch test reveals that the films are highly scratch resistant with a coefficient of friction ranging from 0.15 to 0.04. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Mechanical properties of ZnS nanowires and thin films are studied as a function of size and growth direction using all-atom molecular dynamics simulations. Using the stress-strain relationship we extract Young's moduli of nanowires and thin films at room temperature. Our results show that Young's modulus of 0001] nanowires has strong size dependence. On the other hand, 01 (1) over bar0] nanowires do not exhibit a strong size dependence of Young's modulus in the size range we have investigated. We provide a microscopic understanding of this behavior on the basis of bond stretching and contraction due to the rearrangement of atoms in the surface layers. The ultimate tensile strengths of the nanowires do not show much size dependence. To investigate the mechanical behavior of ZnS in two dimensions, we calculate Young's modulus of thin films under tensile strain along the 0001] direction. Young's modulus of thin films converges to the bulk value more rapidly than that of the 0001] nanowire.
Resumo:
Tin (Sn) doped zinc oxide (ZnO) thin films were synthesized by sol-gel spin coating method using zinc acetate di-hydrate and tin chloride di-hydrate as the precursor materials. The films were deposited on glass and silicon substrates and annealed at different temperatures in air ambient. The agglomeration of grains was observed by the addition of Sn in ZnO film with an average grain size of 60 nm. The optical properties of the films were studied using UV-VIS-NIR spectrophotometer. The optical band gap energies were estimated at different concentrations of Sn. The MOS capacitors were fabricated using Sn doped ZnO films. The capacitance-voltage (C-V), dissipation vs. voltage (D-V) and current-voltage (I-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated. The porosity and surface area of the films were increased with the doping of Sn which makes these films suitable for opto-electronic applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Thin films of Sb20S40Se40 of thickness 800 nm were prepared by thermal evaporation method. The as-prepared and illuminated thin films were studied by X-ray diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy and Raman spectroscopy. The optical band gap was reduced due to photo induced effects along with the increase in disorder. These optical properties changes are due to the change of homopolar bond densities. The core level peak shifting in XPS and Raman spectra supports the optical changes happening in the film due to light exposure.
Resumo:
The β-phase of polyvinylidene fluoride (PVDF) is well known for its piezoelectric properties. PVDF films have been developed using solvent cast method. The films thus produced are in α-phase. The α-phase is transformed to piezoelectric β-phase when the film is hot-stretched with various different stretching factors at various different temperatures. The films are then characterized in terms of their mechanical properties and surface morphological changes during the transformation from α- to β-phases by using X-ray diffraction, differential scanning calorimeter, Raman spectra, Infrared spectra, tensile testing, and scanning electron microscopy. The films showed increased crystallinity with stretching at temperature up to 80°C. The optimum conditions to achieve β-phase have been discussed in detail. The fabricated PVDF sensors have been tested for free vibration and impact on plate structure, and its response is compared with conventional piezoelectric wafer type sensor. The resonant and antiresonant peaks in the frequency response of PVDF sensor match well with that of lead zirconate titanate wafer sensors. Effective piezoelectric properties and the variations in the frequency response spectra due to free vibration and impact loading conditions are reported. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers.
Resumo:
Bilayer thin films of Bi/As2S3 were prepared from Bi and As2S3 by thermal evaporation technique under high vacuum. We have prepared three bilayer films of 905nm, 910nm and 915nm thickness with with As2S3 as bottom layer (900nm) and Bi as top layer (5,10,15 nm). We have compared the optical changes due to the thickness variation of Bi layer on As2S3 film. The changes were characterized by FTIR and XPS techniques.
Resumo:
The effect of oxygen pressure (P-O2) on the Yttrium Iron Garnet (YIG) thin films were grown on silicon substrate by rf sputtering method was studied. The as-deposited films at 300K were amorphous in nature. The crystallization of these films was achieved by annealing at a temperature of 800 degrees C/1hr in air. The structural, microstructural and magnetic properties were found to be dependent on P-O2.
Resumo:
Pure and tin doped zinc oxide (Sn:ZnO) thin films were prepared for the first time by NSP technique using aqueous solutions of zinc acetate dehydrate, tin (IV) chloride fendahydrate and methanol. X-ray diffraction patterns confirm that the films are polycrystalline in nature exhibiting hexagonal wurtzite type, with (0 0 2) as preferred orientation. The structural parameters such as lattice constant ('a' and `c'), crystallite size, dislocation density, micro strain, stress and texture coefficient were calculated from X-ray diffraction studies. Surface morphology was found to be modified with increasing Sn doping concentration. The ZnO films have high transmittance 85% in the visible region, and the transmittance is found to be decreased with the increase of Sn doping concentration. The corresponding optical band gap decreases from 3.25 to 3.08 eV. Room temperature photoluminescence reveals the sharp emission of strong UV peak at 400 nm (3.10 eV) and a strong sharp green luminescence at 528 nm (2.34 eV) in the Sn doped ZnO films. The electrical resistivity is found to be 10(6) Omega-cm at higher temperature and 10(5) Omega-cm at lower temperature. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we have carried out thin film characterization of poly(3,4-propylenedioxythiophene)-sultone (PProDOT-S), a derivative of electrochromic poly(3,4-propylenedioxythiophene) (PProDOT). PProDOT-S was deposited onto transparent conducting oxide coated glass substrates by solution casting method. Single wavelength spectrophotometry is used to monitor the switching speed and contrast ratio at maximum wavelength (lambda (max)). The percentage transmittance at the lambda (max) of the neutral polymer is monitored as a function of time when the polymer film is repeatedly switched. This experiment gives a quantitative measure of the speed with which a film is able to switch between the two states i.e. the coloured and the bleached states. PProDOT-S films were switched at a voltage of 1 center dot 9 V with a switching speed of 2 s at lambda (max) of 565 nm and showed a contrast of similar to 37%. Cyclic voltammetry performed at different scan rates have shown the characteristic anodic and cathodic peaks. The structural investigations of PProDOT-S films by IR spectra were in good agreement with previously reported results. Raman spectra of PProDOT-S showed a strong Raman peak at 1509 cm (-aEuro parts per thousand 1) and a weak peak at 1410 cm (-aEuro parts per thousand 1) due to the C = C asymmetric and symmetric stretching vibrations of thiophene rings. The morphological investigations carried out by using scanning electron microscope (SEM) of polymer films have shown that these polymers are found to be arranged in dense packed clusters with non-uniform distribution having an average width and length of 95 nm and 160 nm, respectively.
Resumo:
In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic-inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic-organic nanocomposite, comprising Cu4O3-CuO-C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu-4(deaH)(dea)(oAc)(5) a <...aEuro parts per thousand(CH3)(2)CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.
Resumo:
Electrochemical deposition of Pd on conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode results in the formation of a stable dendritic film of Pd. In the absence of the PEDOT under-layer, Pd deposition is smooth and non-dendritic. Both Pd-PEDOT/C and Pd/C electrodes are studied for electrooxidation of 1,2-propanediol (PD) in an alkaline electrolyte. Owing to enhanced surface area and surface defects on dendritic Pd, the Pd-PEDOT/C electrode exhibits greater catalytic activity than the Pd/C electrode. Cyclic voltammetry studies suggest that peak current density increases with an increase in concentrations of PD and NaOH in the electrolyte. Repetitive cyclic voltammetry and amperometry studies indicate that Pd-PEDOT/C electrode possesses a high electrochemical stability with greater catalytic activity than Pd/C electrode toward electrooxidation of PD. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We present an extensive study on the structural, electrical and optical properties of InN thin films grown on c-Al2O3, GaN(130 nm)/Al2O3, GaN(200 nm)/Al2O3 and GaN(4 mu m)/Al2O3 by using plasma-assisted molecular beam epitaxy. The high resolution X-ray diffraction study reveals better crystalline quality for the film grown on GaN(4 mu m)/Al2O3 as compared to others. The electronic and optical properties seem to be greatly influenced by the structural quality of the films, as can be evidenced from Hall measurement and optical absorption spectroscopy. Kane's k.p model was used to describe the dependence of optical absorption edge of InN films on carrier concentration by considering the non-parabolic dispersion relation for carrier in the conduction band. Room temperature Raman spectra for the InN films grown on GaN show the signature of residual tensile stress in contrast to the compressive stress observed for the films grown directly on c-Al2O3. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A detailed low temperature magneto-transport study is carried out to understand the transport mechanism in pure and Co doped ZnO thin films grown by pulsed laser deposition (PLD) technique. A negative transverse magneto-resistance (MR) (with a value similar to 4% at 4.5 K) which decreases monotonically with the increase in temperature, is observed for the undoped ZnO film. A competition between positive and negative MR is observed for the Co doped ZnO samples. In this case at higher field values negative MR contribution dominates over the positive MR, which gives rise to a slope change in the MR data. Our data for MR shows excellent agreement with the semi-empirical formula given by Khosla et al., which is originally proposed for the degenerate semiconductors. This formula incorporates the third order perturbation expansion of the s-d exchange scattering of the conduction electrons from the localised spins. We have also obtained the Hall mobility, carrier conc. and mean free path as function of temperature for the pure ZnO film.
Resumo:
Ferroelectric c-oriented Bi2VO5.5 (BVO) thin films (thickness approximate to 300 nm) were fabricated by pulsed laser deposition on corning glass substrates. Nonlinear refractive index (n(2)) and two photon absorption coefficient (beta) were measured by Z-scan technique at 532 nm wavelength delivering pulses with 10 ns duration. Relatively large values of n(2) = 2.05 +/- 0.2 x 10(-10) cm(2)/W and beta = 9.36 +/- 0.3 cm/MW were obtained for BVO thin films. Origin of the large optical nonlinearities in BVO thin films was discussed based on bond-orbital theory of transition metal oxides. (c) 2012 Elsevier B.V. All rights reserved.