467 resultados para Binding Constant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of anticancer agents that act via stabilization of telomeric G-quadruplex DNA (G4DNA) is important because such agents often inhibit telomerase activity. Several types of G4DNA binding ligands are known. In these studies, the target structures often involve a single G4 DNA unit formed by short DNA telomeric sequences. However, the 3'-terminal single-stranded human telomeric DNA can form higher-order structures by clustering consecutive quadruplex units (dimers or nmers). Herein, we present new synthetic gemini (twin) bisbenzimidazole ligands, in which the oligo-oxyethylene spacers join the two bisbenzimidazole units for the recognition of both monomeric and dimeric G4DNA, derived from d(T2AG3)4 and d(T2AG3) 8 human telomeric DNA, respectively. The spacer between the two bisbenzimidazoles in the geminis plays a critical role in the G4DNA stability. We report here (i) synthesis of new effective gemini anticancer agents that are selectively more toxic towards the cancer cells than the corresponding normal cells; (ii) formation and characterization of G4DNA dimers in solution as well as computational construction of the dimeric G4DNA structures. The gemini ligands direct the folding of the single-stranded DNA into an unusually stable parallel-stranded G4DNA when it was formed in presence of the ligands in KCl solution and the gemini ligands show spacer length dependent potent telomerase inhibition properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A perturbation of FtsZ assembly dynamics has been shown to inhibit bacterial cytokinesis. In this study, the antibacterial activity of 151 rhodanine compounds was assayed using Bacillus subtilis cells. Of 151 compounds, eight strongly inhibited bacterial proliferation at 2 mu M. Subsequently, we used the elongation of B. subtilis cells as a secondary screen to identify potential FtsZ-targeted antibacterial agents. We found that three compounds significantly increased bacterial cell length. One of the three compounds, namely, CCR-11 (E)-2-thioxo-5-({3-(trifluoromethyl)phenyl]furan-2-yl}methylene) thiazolidin-4-one], inhibited the assembly and GTPase activity of FtsZ in vitro. CCR-11 bound to FtsZ with a dissociation constant of 1.5 +/- 0.3 mu M. A docking analysis indicated that CCR-11 may bind to FtsZ in a cavity adjacent to the T7 loop and that short halogen oxygen, H-bonding, and hydrophobic interactions might be important for the binding of CCR-11 with FtsZ. CCR-11 inhibited the proliferation of B. subtilis cells with a half-maximal inhibitory concentration (IC50) of 1.2 +/- 0.2 mu M and a minimal inhibitory concentration of 3 mu M. It also potently inhibited proliferation of Mycobacterium smegmatis cells. Further, CCR-11 perturbed Z-ring formation in B. subtilis cells; however, it neither visibly affected nucleoid segregation nor altered the membrane integrity of the cells. CCR-11 inhibited HeLa cell proliferation with an IC50 value of 18.1 +/- 0.2,mu M (similar to 15 x IC50 of B. subtilis cell proliferation). The results suggested that CCR-11 inhibits bacterial cytokinesis by inhibiting FtsZ assembly, and it can be used as a lead molecule to develop FtsZ-targeted antibacterial agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism by which the hinge regions of glycoprotein hormone receptors couple hormone binding to activation of downstream effecters is not clearly understood. In the present study, agonistic (311.62) and antagonistic (311.87) monoclonal antibodies (MAbs) directed against the TSH receptor extracellular domain were used to elucidate role of the hinge region in receptor activation. MAb 311.62 which identifies the LRR/Cb-2 junction (aa 265-275), increased the affinity of TSHR for the hormone while concomitantly decreasing its efficacy, whereas MAb 311.87 recognizing LRR 7-9 (aa 201-259) acted as a non-competitive inhibitor of Thyroid stimulating hormone (TSH) binding. Binding of MAbs was sensitive to the conformational changes caused by the activating and inactivating mutations and exhibited differential effects on hormone binding and response of these mutants. By studying the effects of these MAbs on truncation and chimeric mutants of thyroid stimulating hormone receptor (TSHR), this study confirms the tethered inverse agonistic role played by the hinge region and maps the interactions between TSHR hinge region and exoloops responsible for maintenance of the receptor in its basal state. Mechanistic studies on the antibody-receptor interactions suggest that MAb 311.87 is an allosteric insurmountable antagonist and inhibits initiation of the hormone induced conformational changes in the hinge region, whereas MAb 311.62 acts as a partial agonist that recognizes a conformational epitope critical for coupling of hormone binding to receptor activation. The hinge region, probably in close proximity with the alpha-subunit in the hormone-receptor complex, acts as a tunable switch between hormone binding and receptor activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using cell based screening assay, we identified a novel anti-tubulin agent (Z)-5-((5-(4-bromo-3-chlorophenyl)furan-2-yl)methylene)-2-thioxothiazoli din-4-one (BCFMT) that inhibited proliferation of human cervical carcinoma (HeLa) (IC50, 7.2 +/- 1.8 mu M), human breast adenocarcinoma (MCF-7) (IC50, 10.0 +/- 0.5 mu M), highly metastatic breast adenocarcinoma (MDA-MB-231) (IC50, 6.0 +/- 1 mu M), cisplatin-resistant human ovarian carcinoma (A2780-cis) (IC50, 5.8 +/- 0.3 mu M) and multi-drug resistant mouse mammary tumor (EMT6/AR1) (IC50, 6.5 +/- 1 mu M) cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 mu M), BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably) state by 135% and reduced the dynamicity (dimer exchange per unit time) of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 +/- 1.8 mu M, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K-i) of 5.2 +/- 1.5 mu M suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2) at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug resistance cells by suppressing microtubule dynamics and indicated that the compound may have chemotherapeutic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis, molecular structure, DNA binding and nuclease activity of Cu4O4 open-cubane tetranuclear copper(II) complex with 3-2-(ethyl amino)ethyl]imino]-2-butanoneoxime (HL) are reported for the first time. The neutral tetranuclear Cu4L4(ClO4)(4)] complex crystallizes in tetragonal space group P (4) over bar2(1)c with the unit cell parameters; a = 13.798(4) angstrom, b = 13.798(4) angstrom, c = 14.119(6) angstrom, V = 2688(16) angstrom(3), Z = 8, R = 0.0636. Symmetrically equivalent copper atoms exhibit a CuN3O3 elongated distorted octahedral coordination environment, with three nitrogen atoms of the L ligand and one oxime-oxygen atom of second L ligand at equatorial positions, one oxime-oxygen atom of the third L ligand and perchlorate oxygen at axial positions. The complex shows quasireversible cyclic voltammetric response at 0.805 V (Delta E-p = 277 mV) at 100 mV s (1) in DMF for the Cu(II)/Cu(I) redox couple. The binding study of the complex with calf-thymus DNA has been investigated using absorption spectrophotometry. The complex shows strong nuclease activity on stranded pBR 322 plasmid DNA in the presence of hydrogen peroxide and marginal nuclease activity in the presence of reducing agent (dithiothreitol). (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Transthyretin (TTR) is a homotetrameric serum and cerebrospinal fluid protein that transports thyroxine (T4) and retinol by binding to retinol binding protein. Rate-limiting tetramer dissociation and rapid monomer misfolding and disassembly of TTR lead to amyloid fibril formation in different tissues causing various amyloid diseases. Based on the current understanding of the pathogenesis of TTR amyloidosis, it is considered that the inhibition of amyloid fibril formation by stabilization of TTR in native tetrameric form is a viable approach for the treatment of TTR amyloidosis. Methodology and Principal Findings: We have examined interactions of the wtTTR with a series of compounds containing various substitutions at biphenyl ether skeleton and a novel compound, previously evaluated for binding and inhibiting tetramer dissociation, by x-ray crystallographic approach. High resolution crystal structures of five ligands in complex with wtTTR provided snapshots of negatively cooperative binding of ligands in two T4 binding sites besides characterizing their binding orientations, conformations, and interactions with binding site residues. In all complexes, the ligand has better fit and more potent interactions in first T4 site i.e. (AC site) than the second T4 site (BD site). Together, these results suggest that AC site is a preferred ligand binding site and retention of ordered water molecules between the dimer interfaces further stabilizes the tetramer by bridging a hydrogen bond interaction between Ser117 and its symmetric copy. Conclusion: Novel biphenyl ether based compounds exhibit negative-cooperativity while binding to two T4 sites which suggests that binding of only single ligand molecule is sufficient to inhibit the TTR tetramer dissociation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The methanol-inducible alcohol oxidase I (AOXI) promoter of the methylotrophic yeast, Pichia pastoris, is used widely for the production of recombinant proteins. AOXI transcription is regulated by the zinc finger protein Mxr1p (methanol expression regulator 1). ROP (repressor of phosphoenolpyruvate carboxykinase, PEPCK) is a methanol- and biotin starvation-inducible zinc finger protein that acts as a negative regulator of PEPCK in P. pastoris cultured in biotin-deficient, glucose-ammonium medium. The function of ROP during methanol metabolism is not known. In this study, we demonstrate that ROP represses methanol-inducible expression of AOXI when P. pastoris is cultured in a nutrient-rich medium containing yeast extract, peptone, and methanol (YPM). Deletion of the gene encoding ROP results in enhanced expression of AOXI and growth promotion whereas overexpression of ROP results in repression of AOXI and growth retardation of P. pastoris cultured in YPM medium. Surprisingly, deletion or overexpression of ROP has no effect on AOXI gene expression and growth of P. pastoris cultured in a minimal medium containing yeast nitrogen base and methanol (YNBM). Subcellular localization studies indicate that ROP translocates from cytosol to nucleus of cells cultured in YPM but not YNBM. In vitro DNA binding studies indicate that AOXI promoter sequences containing 5' CYCCNY 3' motifs serve as binding sites for Mxr1p as well as ROP. Thus, Mxr1p and ROP exhibit the same DNA binding specificity but regulate methanol metabolism antagonistically in P. pastoris. This is the first report on the identification of a transcriptional repressor of methanol metabolism in any yeast species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Bacteria such as Escherichia coli and Salmonella typhimurium can utilize acetate as the sole source of carbon and energy. Acetate kinase (AckA) and phosphotransacetylase (Pta), key enzymes of acetate utilization pathway, regulate flux of metabolites in glycolysis, gluconeogenesis, TCA cycle, glyoxylate bypass and fatty acid metabolism. Results: Here we report kinetic characterization of S. typhimurium AckA (StAckA) and structures of its unliganded (Form-I, 2.70 angstrom resolution) and citrate-bound (Form-II, 1.90 angstrom resolution) forms. The enzyme showed broad substrate specificity with k(cat)/K-m in the order of acetate > propionate > formate. Further, the K-m for acetyl-phosphate was significantly lower than for acetate and the enzyme could catalyze the reverse reaction (i.e. ATP synthesis) more efficiently. ATP and Mg2+ could be substituted by other nucleoside 5'-triphosphates (GTP, UTP and CTP) and divalent cations (Mn2+ and Co2+), respectively. Form-I StAckA represents the first structural report of an unliganded AckA. StAckA protomer consists of two domains with characteristic beta beta beta alpha beta alpha beta alpha topology of ASKHA superfamily of proteins. These domains adopt an intermediate conformation compared to that of open and closed forms of ligand-bound Methanosarcina thermophila AckA (MtAckA). Spectroscopic and structural analyses of StAckA further suggested occurrence of inter-domain motion upon ligand-binding. Unexpectedly, Form-II StAckA structure showed a drastic change in the conformation of residues 230-300 compared to that of Form-I. Further investigation revealed electron density corresponding to a citrate molecule in a pocket located at the dimeric interface of Form-II StAckA. Interestingly, a similar dimeric interface pocket lined with largely conserved residues could be identified in Form-I StAckA as well as in other enzymes homologous to AckA suggesting that ligand binding at this pocket may influence the function of these enzymes. Conclusions: The biochemical and structural characterization of StAckA reported here provides insights into the biochemical specificity, overall fold, thermal stability, molecular basis of ligand binding and inter-domain motion in AckA family of enzymes. Dramatic conformational differences observed between unliganded and citrate-bound forms of StAckA led to identification of a putative ligand-binding pocket at the dimeric interface of StAckA with implications for enzymatic function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the restriction endonucleases (REases) are dependent on Mg2+ for DNA cleavage, and in general, Ca2+ inhibits their activity. RKpnI, an HNH active site containing beta beta alpha-Me finger nuclease, is an exception. In presence of Ca2+, the enzyme exhibits high-fidelity DNA cleavage and complete suppression of Mg2+-induced promiscuous activity. To elucidate the mechanism of unusual Ca2+-mediated activity, we generated alanine variants in the putative Ca-2+ binding motif, E(132)xD(134)xD(136), of the enzyme. Mutants showed decreased levels of DNA cleavage in the presence of Ca2+. We demonstrate that ExDxD residues are involved in Ca2+ coordination; however, the invariant His of the catalytic HNH motif acts as a general base for nucleophile activation, and the other two active site residues, D148 and Q175, also participate in Ca2+-mediated cleavage. Insertion of a 10-amino acid linker to disrupt the spatial organization of the ExDxD and HNH motifs impairs Ca2+ binding and affects DNA cleavage by the enzyme. Although ExDxD mutant enzymes retained efficient cleavage at the canonical sites in the presence of Mg2+, the promiscuous activity was greatly reduced, indicating that the carboxyl residues of the acidic triad play an important role in sequence recognition by the enzyme. Thus, the distinct Ca2+ binding motif that confers site specific cleavage upon Ca2+ binding is also critical for the promiscuous activity of the Mg2+-bound enzyme, revealing its role in metal ion-mediated modulation of DNA cleavage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently it has been shown that the fidelity of the ground state of a quantum many-body system can be used todetect its quantum critical points (QCPs). If g denotes the parameter in the Hamiltonian with respect to which the fidelity is computed, we find that for one-dimensional models with large but finite size, the fidelity susceptibility chi(F) can detect a QCP provided that the correlation length exponent satisfies nu < 2. We then show that chi(F) can be used to locate a QCP even if nu >= 2 if we introduce boundary conditions labeled by a twist angle N theta, where N is the system size. If the QCP lies at g = 0, we find that if N is kept constant, chi(F) has a scaling form given by chi(F) similar to theta(-2/nu) f (g/theta(1/nu)) if theta << 2 pi/N. We illustrate this both in a tight-binding model of fermions with a spatially varying chemical potential with amplitude h and period 2q in which nu = q, and in a XY spin-1/2 chain in which nu = 2. Finally we show that when q is very large, the model has two additional QCPs at h = +/- 2 which cannot be detected by studying the energy spectrum but are clearly detected by chi(F). The peak value and width of chi(F) seem to scale as nontrivial powers of q at these QCPs. We argue that these QCPs mark a transition between extended and localized states at the Fermi energy. DOI: 10.1103/PhysRevB.86.245424

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fidelity of the folding pathways being encoded in the amino acid sequence is met with challenge in instances where proteins with no sequence homology, performing different functions and no apparent evolutionary linkage, adopt a similar fold. The problem stated otherwise is that a limited fold space is available to a repertoire of diverse sequences. The key question is what factors lead to the formation of a fold from diverse sequences. Here, with the NAD(P)-binding Rossmann fold domains as a case study and using the concepts of network theory, we have unveiled the consensus structural features that drive the formation of this fold. We have proposed a graph theoretic formalism to capture the structural details in terms of the conserved atomic interactions in global milieu, and hence extract the essential topological features from diverse sequences. A unified mathematical representation of the different structures together with a judicious concoction of several network parameters enabled us to probe into the structural features driving the adoption of the NAD(P)-binding Rossmann fold. The atomic interactions at key positions seem to be better conserved in proteins, as compared to the residues participating in these interactions. We propose a ``spatial motif'' and several ``fold specific hot spots'' that form the signature structural blueprints of the NAD(P)-binding Rossmann fold domain. Excellent agreement of our data with previous experimental and theoretical studies validates the robustness and validity of the approach. Additionally, comparison of our results with statistical coupling analysis (SCA) provides further support. The methodology proposed here is general and can be applied to similar problems of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Notch signalling pathway is implicated in a wide variety of cellular processes throughout metazoan development. Although the downstream mechanism of Notch signalling has been extensively studied, the details of its ligand-mediated receptor activation are not clearly understood. Although the role of Notch ELRs EGF (epidermal growth factor)-like-repeats] 11-12 in ligand binding is known, recent studies have suggested interactions within different ELRs of the Notch receptor whose significance remains to be understood. Here, we report critical inter-domain interactions between human Notch1 ELRs 21-30 and the ELRs 11-15 that are modulated by calcium. Surface plasmon resonance analysis revealed that the interaction between ELRs 21-30 and ELRs 11-15 is similar to 10-fold stronger than that between ELRs 11-15 and the ligands. Although there was no interaction between Notch 1 ELRs 21-30 and the ligands in vitro, addition of pre-clustered Jagged1Fc resulted in the dissociation of the preformed complex between ELRs 21-30 and 11-15, suggesting that inter-domain interactions compete for ligand binding. Furthermore, the antibodies against ELRs 21-30 inhibited ligand binding to the full-length Notch1 and subsequent receptor activation, with the antibodies against ELRs 25-26 being the most effective. These results suggest that the ELRs 25-26 represent a cryptic ligand-binding site which becomes exposed only upon the presence of the ligand. Thus, using specific antibodies against various domains of the Notch1 receptor, we demonstrate that, although ELRs 11-12 are the principal ligand-binding site, the ELRs 25-26 serve as a secondary binding site and play an important role in receptor activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topoisomerases (topos) maintain DNA topology and influence DNA transaction processes by catalysing relaxation, supercoiling and decatenation reactions. In the cellular milieu, division of labour between different topos ensures topological homeostasis and control of central processes. In Escherichia coli, DNA gyrase is the principal enzyme that carries out negative supercoiling, while topo IV catalyses decatenation, relaxation and unknotting. DNA gyrase apparently has the daunting task of undertaking both the enzyme functions in mycobacteria, where topo IV is absent. We have shown previously that mycobacterial DNA gyrase is an efficient decatenase. Here, we demonstrate that the strong decatenation property of the enzyme is due to its ability to capture two DNA segments in trans. Topo IV, a strong dedicated decatenase of E. coli, also captures two distinct DNA molecules in a similar manner. In contrast, E. coli DNA gyrase, which is a poor decatenase, does not appear to be able to hold two different DNA molecules in a stable complex. The binding of a second DNA molecule to GyrB/ParE is inhibited by ATP and the non-hydrolysable analogue, AMPPNP, and by the substitution of a prominent positively charged residue in the GyrB N-terminal cavity, suggesting that this binding represents a potential T-segment positioned in the cavity. Thus, after the GyrA/ParC mediated initial DNA capture, GyrB/ParE would bind efficiently to a second DNA in trans to form a T-segment prior to nucleotide binding and closure of the gate during decatenation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A current-error space phasor based hysteresis controller with nearly constant switching frequency is proposed for a general n-level voltage source inverter fed three-phase induction motor drive. Like voltage-controlled space vector PWM (SVPWM), the proposed controller can precisely detect sub-sector changes and for switching it selects only the nearest switching voltage vectors using the information of the estimated fundamental stator voltages along α and β axes. It provides smooth transition between voltage levels, including operation in over modulation region. Due to adjacent switching amongst the nearest switching vectors forming a triangular sub-sector, in which tip of the fundamental stator voltage vector of the machine lies, switching loss is reduced while keeping the current-error space phasor within the varying parabolic boundary. Appropriate dimension and orientation of this parabolic boundary ensures similar switching frequency spectrum like constant switching frequency SVPWM-based induction motor (IM) drive. Inherent advantages of multi-level inverter and space phasor based current hysteresis controller are retained. The proposed controller is simulated as well as implemented on a 5-level inverter fed 7.5 kW open-end winding IM drive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A current-error space-vector-based hysteresis current controller for a general n-level voltage-source inverter (VSI)-fed three-phase induction motor (IM) drive is proposed here, with control of the switching frequency variation for the full linear modulation range. The proposed current controller monitors the space-vector-based current error of an n-level VSI-fed IM to keep the current error within a parabolic boundary, using the information of the current triangular sector in which the tip of the reference vector lies. Information of the reference voltage vector is estimated using the measured current-error space vectors, along the alpha- and beta-axes. Appropriate dimension and orientation of this parabolic boundary ensure a switching frequency spectrum similar to that of a constant-switching-frequency voltage-controlled space vector pulsewidth modulation (PWM) (SVPWM)-based IM drive. Like SVPWM for multilevel inverters, the proposed controller selects inverter switching vectors, forming a triangular sector in which the tip of the reference vector stays, for the hysteresis PWM control. The sector in the n-level inverter space vector diagram, in which the tip of the fundamental stator voltage stays, is precisely detected, using the sampled reference space vector estimated from the instantaneous current-error space vectors. The proposed controller retains all the advantages of a conventional hysteresis controller such as fast current control, with smooth transition to the overmodulation region. The proposed controller is implemented on a five-level VSI-fed 7.5-kW IM drive.