455 resultados para symbolic dynamics
Resumo:
In this paper we calculate the potential for a prolate spheroidal distribution as in a dark matter halo with a radially varying eccentricity. This is obtained by summing up the shell-by-shell contributions of isodensity surfaces, which are taken to be concentric and with a common polar axis and with an axis ratio that varies with radius. Interestingly, the constancy of potential inside a shell is shown to be a good approximation even when the isodensity contours are dissimilar spheroids, as long as the radial variation in eccentricity is small as seen in realistic systems. We consider three cases where the isodensity contours are more prolate at large radii, or are less prolate or have a constant eccentricity. Other relevant physical quantities like the rotation velocity, the net orbital and vertical frequency due to the halo and an exponential disc of finite thickness embedded in it are obtained. We apply this to the kinematical origin of Galactic warp, and show that a prolate-shaped halo is not conducive to making long-lived warps - contrary to what has been proposed in the literature. The results for a prolate mass distribution with a variable axis ratio obtained are general, and can be applied to other astrophysical systems, such as prolate bars, for a more realistic treatment.
Resumo:
A droplet residing on a vibrating surface and in the pressure antinode of an asymmetric standing wave can spread radially outward and atomize. In this work, proper orthogonal decomposition through high speed imaging is shown to predict the likelihood of atomization for various viscous fluids based on prior information in the droplet spreading phase. Capillary instabilities are seen to affect ligament rupture. Viscous dissipation plays an important role in determining the wavelength of the most unstable mode during the inception phase of the ligaments. However, the highest ligament capillary number achieved was less than 1, and the influence of viscosity in the ligament growth and breakup phases is quite minimal. It is inferred from the data that the growth of a typical ligament is governed by a balance between the inertial force obtained from the inception phase and capillary forces. By including the effect of acoustic pressure field around the droplet, the dynamics of the ligament growth phase is revealed and the ligament growth profiles for different fluids are shown to collapse on a straight line using a new characteristic time scale.
Resumo:
Rigid splitter plates in the wake of bluff bodies are known to suppress the primary vortex shedding. In the present work, we experimentally study the problem of a flexible splitter plate in the wake of a circular cylinder. In this case, the splitter plate is free to continuously deform along its length due to the fluid forces acting on it; the flexural rigidity (EI) of the plate being an important parameter. Direct visualizations of the splitter plate motions, for very low values of flexural rigidity (EI), indicate periodic traveling wave type deformations of the splitter plate with maximum tip amplitudes of the order of I cylinder diameter. As the Reynolds number based on cylinder diameter is varied, two regimes of periodic splitter plate motions are found that are referred to as mode I and mode II, with a regime of aperiodic motions between them. The frequency of plate motions in both periodic modes is found to be close to the plane cylinder Strouhal number of about 0.2, while the average frequencies in the non-periodic regime are substantially lower. The measured normalized phase speed of the traveling wave for both periodic modes is also close to the convection speed of vortices in the plane cylinder wake. As the flexural rigidity of the plate (EI) is increased, the response of the plate was found to shift to the right when plotted with flow speed or Re. To better capture the effect of varying EI, we define and use a non-dimensional bending stiffness, K*, similar to the ones used in the flag flutter problem, K*=EI/(0.5 rho(UL3)-L-2), where U is the free-stream velocity and L is the splitter plate length. Amplitude data for different EI cases when plotted against this parameter appear to collapse on to a single curve for a given splitter plate length. Measurements of the splitter plate motions for varying splitter plate lengths indicate that plates that are substantially larger than the formation length of the plane cylinder wake have similar responses, while shorter plates show significant differences.
Resumo:
Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as E-f, the fibroblast resting-membrane potential, the fibroblast conductance G(f), and the MF gap-junctional coupling G(gap). Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as G(gap), G(f), and E-f, and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity CV decreases as a function of G(gap), for zero-sided and one-sided couplings; however, for two-sided coupling, CV decreases initially and then increases as a function of G(gap), and, eventually, we observe that conduction failure occurs for low values of G(gap). In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling G(gap) or E-f. Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities.
Resumo:
The dynamics and interactions of edge dislocations in a nearly aligned sheared lamellar mesophase is analysed to provide insights into the relationship between disorder and rheology. First, the mesoscale permeation and momentum equations for the displacement field in the presence of external forces are derived from the model H equations for the concentration and momentum field. The secondary flow generated due to the mean shear around an isolated defect is calculated, and the excess viscosity due to the presence of the defect is determined from the excess energy dissipation due to the secondary flow. The excess viscosity for an isolated defect is found to increase with system size in the cross-stream direction as L-3/2 for an isolated defect, though this divergence is cut-off due to interactions in a defect suspension. As the defects are sheared past each other due to the mean flow, the Peach-Koehler force due to elastic interaction between pairs of defects is found to cause no net displacement relative to each other as they approach from large separation to the distance of closest approach. The equivalent force due to viscous interactions is found to increase the separation for defects of opposite sign, and decrease the separation for defects of same sign. During defect interactions, we find that there is no buckling instability due to dilation of layers for systems of realistic size. However, there is another mechanism, which is the velocity difference generated across a slightly deformed bilayer due to the mean shear, which could result in the creation of new defects. (C) 2013 AIP Publishing LLC.
Resumo:
We present computer simulation study of two-dimensional infrared spectroscopy (2D-IR) of water confined in reverse micelles (RMs) of various sizes. The present study is motivated by the need to understand the altered dynamics of confined water by performing layerwise decomposition of water, with an aim to quantify the relative contributions of different layers water molecules to the calculated 2D-IR spectrum. The 0-1 transition spectra clearly show substantial elongation, due to in-homogeneous broadening and incomplete spectral diffusion, along the diagonal in the surface water layer of different sized RMs. Fitting of the frequency fluctuation correlation functions reveal that the motion of the surface water molecules is sub-diffusive and indicate the constrained nature of their dynamics. This is further supported by two peak nature of the angular analogue of van Hove correlation function. With increasing system size, the water molecules become more diffusive in nature and spectral diffusion almost completes in the central layer of the larger size RMs. Comparisons between experiments and simulations establish the correspondence between the spectral decomposition available in experiments with the spatial decomposition available in simulations. Simulations also allow a quantitative exploration of the relative role of water, sodium ions, and sulfonate head groups in vibrational dephasing. Interestingly, the negative cross correlation between force on oxygen and hydrogen of O-H bond in bulk water significantly decreases in the surface layer of each RM. This negative cross correlation gradually increases in the central water pool with increasing RMs size and this is found to be partly responsible for the faster relaxation rate of water in the central pool. (C) 2013 AIP Publishing LLC.
Resumo:
This paper reports analytical modeling, simulation and experimental validation for switching and release times of an electrostatically actuated micromachined switch. Presented work is an extension of our earlier work [1] that analytically argued, and numerically and experimentally demonstrated, why pull-in time is larger that pull-up time when the actuation voltage is less than twice of the pull-in voltage. In this paper, switching dynamics is investigated under the influence of squeeze-film damping. Tests were performed on SOI (silicon-on-insulator) based parallel beams structures.Typical voltage requirement for actuation is in the range of 10-30 V. All the experiments were performed in normal atmospheric pressure. Measurement results confirm that the quality factor Q has appreciable effect on the release time compared to the switching time. The quality factor Q is extracted from the response measurement and compared with the ANSYS simulation result. In addition, the dynamic pull-in effect has also been studied and reported in this paper. A contribution of this work includes the effect of various phenomena such as squeeze-film damping, dynamic pull-in, and frequency pull-in effects on the switching dynamics of a MEMS switch.
Resumo:
Gene expression in living systems is inherently stochastic, and tends to produce varying numbers of proteins over repeated cycles of transcription and translation. In this paper, an expression is derived for the steady-state protein number distribution starting from a two-stage kinetic model of the gene expression process involving p proteins and r mRNAs. The derivation is based on an exact path integral evaluation of the joint distribution, P(p, r, t), of p and r at time t, which can be expressed in terms of the coupled Langevin equations for p and r that represent the two-stage model in continuum form. The steady-state distribution of p alone, P(p), is obtained from P(p, r, t) (a bivariate Gaussian) by integrating out the r degrees of freedom and taking the limit t -> infinity. P(p) is found to be proportional to the product of a Gaussian and a complementary error function. It provides a generally satisfactory fit to simulation data on the same two-stage process when the translational efficiency (a measure of intrinsic noise levels in the system) is relatively low; it is less successful as a model of the data when the translational efficiency (and noise levels) are high.
Capturability of augmented proportional navigation (APN) guidance with nonlinear engagement dynamics
Resumo:
Proportional Navigation (PN) and its variants are widely used guidance philosophies. However, in the presence of target maneuver, PN guidance law is effective only for a restrictive set of initial geometries. To account for target maneuvers, the concept of Augmented Proportional Navigation (APN) guidance law was introduced and analyzed in a linearized interceptor-target engagement framework presented in literature. However, there is no work in the literature, that addresses the capturability performance of the APN guidance law in a nonlinear engagement framework. This paper presents such an analysis and obtains the conditions for capturability. It also shows that a shorter time of interception is obtained when APN is formulated in the nonlinear framework as proposed in this paper. Simulation results are given to support the theoretical findings.
Resumo:
Surface-functionalized multiwall carbon nanotubes (MWCNTs) are incorporated in poly(methyl methacrylate)/styrene acrylonitrile (PMMA/SAN) blends and the pretransitional regime is monitored in situ by melt rheology and dielectric spectroscopy. As the blends exhibit weak dynamic asymmetry, the obvious transitions in the melt rheology due to thermal concentration fluctuations are weak. This is further supported by the weak temperature dependence of the correlation length ( approximate to 10-12 angstrom) in the vicinity of demixing. Hence, various rheological techniques in both the temperature and frequency domains are adopted to evaluate the demixing temperature. The spinodal decomposition temperature is manifested in an increase in the miscibility gap in the presence of MWCNTs. Furthermore, MWCNTs lead to a significant slowdown of the segmental dynamics in the blends. Thermally induced phase separation in the PMMA/SAN blends lead to selective localization of MWCNTs in the PMMA phase. This further manifests itself in a significant increase in the melt conductivity.
Resumo:
Pore-forming toxins are known for their ability to efficiently form transmembrane pores which eventually leads to cell lysis. The dynamics of lysis and underlying self-assembly or oligomerization pathways leading to pore formation are incompletely understood. In this manuscript the pore-forming kinetics and lysis dynamics of Cytolysin-A (ClyA) toxins on red blood cells (RBCs) are quantified and compared with experimental lysis data. Lysis experiments are carried out on a fixed mass of RBCs, under isotonic conditions in phosphate-buffered saline, for different initial toxin concentrations ranging from 2.94-14.7 nM. Kinetic models which account for monomer binding, conformation and oligomerization to form the dodecameric ClyA pore complex are developed and lysis is assumed to occur when the number of pores per RBC (n(p)) exceeds a critical number, n(pc). By analysing the model in a sublytic regime (n(p) < n(pc)) the number of pores per RBC to initiate lysis is found to lie between 392 and 768 for the sequential oligomerization mechanism and between 5300 and 6300 for the non-sequential mechanism. Rupture rates which are first order in the number of RBCs are seen to provide the best agreement with the lysis experiments. The time constants for pore formation are estimated to lie between 1 and 20 s and monomer conformation time scales were found to be 2-4 times greater than the oligomerization times. Cell rupture takes places in 100s of seconds, and occurs predominantly with a steady number of pores ranging from 515 to 11 000 on the RBC surface for the sequential mechanism. Both the sequential irreversible and non-sequential kinetics provide similar predictions of the hemoglobin release dynamics, however the hemoglobin released as a function of the toxin concentration was accurately captured only with the sequential model. Each mechanism develops a distinct distribution of mers on the surface, providing a unique experimentally observable fingerprint to identify the underlying oligomerization pathways. Our study offers a method to quantify the extent and dynamics of lysis which is an important aspect of developing novel drug and gene delivery strategies based on pore-forming toxins.
Resumo:
The enzyme SAICAR synthetase ligates aspartate with CAIR (5'-phosphoribosyl-4-carboxy-5-aminoimidazole) forming SAICAR (5-amino-4-imidazole-N-succinocarboxamide ribonucleotide) in the presence of ATP. In continuation with our previous study on the thermostability of this enzyme in hyper-/thermophiles based on the structural aspects, here, we present the dynamic aspects that differentiate the mesophilic (E. coli, E. chaffeensis), thermophilic (G. kaustophilus), and hyperthermophilic (M. jannaschii, P. horikoshii) SAICAR synthetases by carrying out a total of 11 simulations. The five functional dimers from the above organisms were simulated using molecular dynamics for a period of 50 ns each at 300 K, 363 K, and an additional simulation at 333 K for the thermophilic protein. The basic features like root-mean-square deviations, root-mean-square fluctuations, surface accessibility, and radius of gyration revealed the instability of mesophiles at 363 K. Mean square displacements establish the reduced flexibility of hyper-/thermophiles at all temperatures. At the simulations time scale considered here, the long-distance networks are considerably affected in mesophilic structures at 363 K. In mesophiles, a comparatively higher number of short-lived (having less percent existence time) C alpha, hydrogen bonds, hydrophobic interactions are formed, and long-lived (with higher percentage existence time) contacts are lost. The number of time-averaged salt-bridges is at least 2-fold higher in hyperthermophiles at 363 K. The change in surface accessibility of salt-bridges at 363 K from 300 K is nearly doubled in mesophilic protein compared to proteins from other temperature classes.
Resumo:
How does the presence of plastic active dendrites in a pyramidal neuron alter its spike initiation dynamics? To answer this question, we measured the spike-triggered average (STA) from experimentally constrained, conductance-based hippocampal neuronal models of various morphological complexities. We transformed the STA computed from these models to the spectral and the spectrotemporal domains and found that the spike initiation dynamics exhibited temporally localized selectivity to a characteristic frequency. In the presence of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, the STA characteristic frequency strongly correlated with the subthreshold resonance frequency in the theta frequency range. Increases in HCN channel density or in input variance increased the STA characteristic frequency and its selectivity strength. In the absence of HCN channels, the STA exhibited weak delta frequency selectivity and the characteristic frequency was related to the repolarization dynamics of the action potentials and the recovery kinetics of sodium channels from inactivation. Comparison of STA obtained with inputs at various dendritic locations revealed that nonspiking and spiking dendrites increased and reduced the spectrotemporal integration window of the STA with increasing distance from the soma as direct consequences of passive filtering and dendritic spike initiation, respectively. Finally, the presence of HCN channels set the STA characteristic frequency in the theta range across the somatodendritic arbor and specific STA measurements were strongly related to equivalent transfer-impedance-related measurements. Our results identify explicit roles for plastic active dendrites in neural coding and strongly recommend a dynamically reconfigurable multi-STA model to characterize location-dependent input feature selectivity in pyramidal neurons.