423 resultados para Transition metals.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle simulations based on the discrete element method are used to examine the effect of base roughness on the granular flow down an inclined plane. The base is composed of a random configuration of fixed particles, and the base roughness is decreased by decreasing the ratio of diameters of the base and moving particles. A discontinuous transition from a disordered to an ordered flow state is observed when the ratio of diameters of base and moving particles is decreased below a critical value. The ordered flowing state consists of hexagonally close packed layers of particles sliding over each other. The ordered state is denser (higher volume fraction) and has a lower coordination number than the disordered state, and there are discontinuous changes in both the volume fraction and the coordination number at transition. The Bagnold law, which states that the stress is proportional to the square of the strain rate, is valid in both states. However, the Bagnold coefficients in the ordered flowing state are lower, by more than two orders of magnitude, in comparison to those of the disordered state. The critical ratio of base and moving particle diameters is independent of the angle of inclination, and varies very little when the height of the flowing layer is doubled from about 35 to about 70 particle diameters. While flow in the disordered state ceases when the angle of inclination decreases below 20 degrees, there is flow in the ordered state at lower angles of inclination upto 14 degrees. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4710543]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We observe an unusual tunneling magnetoresistance (TMR) phenomenon in a composite of La2/3Sr1/3MnO3 with CoFe2O4 where the TMR versus applied magnetic field loop suggests a ``negative coercive field.'' Tracing its origin back to a ``dipolar-biasing'' of La2/3Sr1/3MnO3 by CoFe2O4, we show that the TMR of even a single composite can be tuned continuously so that the resistance peak or the highest sensitivity of the TMR can be positioned anywhere on the magnetic field axis with a suitable magnetic history of the sample. This phenomenon of an unprecedented tunability of the TMR should be present in general in all such composites. (C) 2012 American Institute of Physics.http://dx.doi.org/10.1063/1.4731206]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using all-atom molecular dynamics simulation, we have studied the effect of size and temperature on the strain induced phase transition of wurtzite CdSe nanowires. The wurtzite structure transforms into a five-fold coordinated structure under uniaxial strain along the c axis. Our results show that lower temperature and smaller size of the nanowires stabilize the five-fold coordinated phase which is not a stable structure in bulk CdSe. High reversibility of this transformation with a very small heat loss will make these nanowires suitable for building efficient nanodevices. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4734990]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature dependent X-ray powder diffraction and dielectric studies have been carried out on tetragonal compositions of (1-x) PbTiO 3(x) BiMeO 3; Me similar to Sc and Zn 1/2 Ti 1/2. The cubic and the tetragonal phases coexist over more than 100 degrees C for 0.70 PbTiO 30.3 Bi ( Zn 1/2 Ti 1/2) O 3 and 0.66 PbTiO 30.34 BiScO 3. The wide temperature range of phase coexistence is shown to be an intrinsic feature of the system, and is attributed to the increase in the degree of the covalent character of the ( Pb +Bi ) O bond with increasing concentration of Bi at the Pb -site. The d-values of the {111} planes of the coexisting phases are nearly identical, suggesting this plane to be the invariant plane for the martensitic type cubic-tetragonal transformation occurring in these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We revisit the assignment of Raman phonons of rare-earth titanates by performing Raman measurements on single crystals of O18 isotope-rich spin ice Dy2Ti2O718 and nonmagnetic Lu2Ti2O718 pyrochlores and compare the results with their O16 counterparts. We show that the low-wavenumber Raman modes below 250 cm-1 are not due to oxygen vibrations. A mode near 200 cm-1, commonly assigned as F2g phonon, which shows highly anomalous temperature dependence, is now assigned to a disorder-induced Raman active mode involving Ti4+ vibrations. Moreover, we address here the origin of the new Raman mode, observed below TC similar to 110 K in Dy2Ti2O7, through a simultaneous pressure-dependent and temperature-dependent Raman study. Our study confirms the new mode to be a phonon mode. We find that dTC/dP = + 5.9 K/GPa. Temperature dependence of other phonons has also been studied at various pressures up to similar to 8 GPa. We find that pressure suppresses the anomalous temperature dependence. The role of the inherent vacant sites present in the pyrochlore structure in the anomalous temperature dependence is also discussed. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sr2SbMnO6 (SSMO) ceramics were, fabricated using the nanocrystalline powders obtained via molten salt synthesis (MSS) method. High temperature X-ray diffraction studies confirmed the structural phase transition (room temperature tetragonal (I4/mcm) to the cubic phase (Pm-3m)) temperature to be around 736K. The discontinuity in the phase transition indicated its first order nature reflecting the presence of ferroelectric-like distortions in SSMO prepared from MSS which seemed to be unique as it was not observed so far in the case of SSMO prepared using solid-state reaction method. The dielectric behavior of SSMO was studied in the 300-950 K temperature range at high frequencies (MHz range) in order to suppress the of space charge and related effects that dominate at such higher temperatures and mask the real phase transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using first-principles calculations we show that the band gap of bilayer sheets of semiconducting transition-metal dichalcogenides (TMDs) can be reduced smoothly by applying vertical compressive pressure. These materials undergo a universal reversible semiconductor-to-metal (S-M) transition at a critical pressure. The S-M transition is attributed to lifting of the degeneracy of the bands at the Fermi level caused by interlayer interactions via charge transfer from the metal to the chalcogen. The S-M transition can be reproduced even after incorporating the band gap corrections using hybrid functionals and the GW method. The ability to tune the band gap of TMDs in a controlled fashion over a wide range of energy opens up the possibility for its usage in a range of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study optimal control of Markov processes with age-dependent transition rates. The control policy is chosen continuously over time based on the state of the process and its age. We study infinite horizon discounted cost and infinite horizon average cost problems. Our approach is via the construction of an equivalent semi-Markov decision process. We characterise the value function and optimal controls for both discounted and average cost cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are very few magnetic members among the 4d and 5d transition metal oxides. In the present work, we examine the recent observation of a high Neel temperature T-N in the 4d oxides SrTcO3 and CaTcO3. Considering a multiband Hubbard model, we find that T-N is larger in the limit of a large bandwidth and vanishingly small intra-atomic exchange interaction strength, contrary to our conventional understanding of magnetism. This is traced to specific aspects of the d(3) configuration at the transition metal site and the study reveals additional examples with high T-N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systematic measurements pertinent to the magnetocaloric effect and nature of magnetic transition around the transition temperature are performed in the 10 nm Pr0.5Ca0.5MnO3 nanoparticles (PCMO10). Maxwell's relation is employed to estimate the change in magnetic entropy. At Curie temperature (T-C) similar to 83.5 K, the change in magnetic entropy (-Delta S-M) discloses a typical variation with a value 0.57 J/kg K, and is found to be magnetic field dependent. From the area under the curve (Delta S vs T), the refrigeration capacity is calculated at T-C similar to 83.5K and it is found to be 7.01 J/kg. Arrott plots infer that due to the competition between the ferromagnetic and anti-ferromagnetic interactions, the magnetic phase transition in PCMO10 is broadly spread over both in temperature as well as magnetic field coordinates. Upon tuning the particle size, size distribution, morphology, and relative fraction of magnetic phases, it may be possible to enhance the magnetocalorific effect further in PCMO10. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4759372]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an effort to study the role of strain rate response on the tribological behavior of metals, room temperature experiments were conducted by sliding commercially pure titanium and a-iron pins against an H-11 die steel flats of various surface textures. The steel flat surface textures were specifically prepared to allow for imposing varying amounts of strain rates at the contacting interface during sliding motion. In the experiments, it was observed that titanium (a harder material than iron) formed a transfer layer on H-11 steel surface textures that produced higher strain rates. In contrast, the titanium pins abraded the steel surfaces that produced lower strain rates. The iron pins were found to abrade the H-11 steel surface regardless of the surface texture characteristics. This unique tribological behavior of titanium is likely due to the fact that titanium undergoes adiabatic shear banding at high strain rates, which creates pathways for lower resistance shear planes. These shear planes lead to fracture and transfer layer formation on the surface of the steel flat, which ultimately promotes a higher strain rate of deformation at the asperity level. Iron does not undergo adiabatic shear banding and thus more naturally abrades the surfaces. Overall, the results clear indicated that a materials strain rate response can be an important factor in controlling the tribological behavior of a plastically deforming material at the asperity level. DOI: 10.1115/1.4007675]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solution structure of IlvN, the regulatory subunit of Escherichia coil acetohydroxyacid synthase I, in the valine-bound form has been determined using high-resolution multidimensional, multinuclear nuclear magnetic resonance (NMR) methods. IlvN in the presence or absence of the effector molecule is present as a 22.5 kDa dimeric molecule. The ensemble of 20 low-energy structures shows a backbone root-mean-square deviation of 0.73 +/- 0.13 angstrom and a root-mean-square deviation of 1.16 +/- 0.13 angstrom for all heavy atoms. Furthermore, more than 98% of the backbone phi and psi dihedral angles occupy the allowed and additionally allowed regions of the Ramachandran map, which is indicative of the fact that the structures are of high stereochemical quality. Each protomer exhibits a beta alpha beta beta alpha beta alpha topology that is a characteristic feature of the ACT domain seen in metabolic enzymes. In the valine-bound form, IlvN exists apparently as a single conformer. In the free form, IlvN exists as a mixture of conformational states that are in intermediate exchange on the NMR time scale. Thus, a large shift in the conformational equilibrium is observed upon going from the free form to the bound form. The structure of the valine-bound form of IlvN was found to be similar to that of the ACT domain of the unliganded form of IlvH. Comparisons of the structures of the unliganded forms of these proteins suggest significant differences. The structural and conformational properties of IlvN determined here have allowed a better understanding of the mechanism of regulation of branched chain amino acid biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the variation of glass transition temperature in supported thin films of polymer nanocomposites, consisting of polymer grafted nanoparticles embedded in a homopolymer matrix. We observe a systematic variation of the estimated glass transition temperature T-g, with the volume fraction of added polymer grafted nanoparticles. We have correlated the observed T-g variation with the underlying morphological transitions of the nanoparticle dispersion in the films. Our data also suggest the possibility of formation of a low-mobility glass or gel-like layer of nanoparticles at the interface, which could play a significant role in determining T-g of the films provided. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4773442]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric current can induce long-range flow of liquid metals over a conducting substrate. This work reports on the effect of the substrate surface roughness on the liquid metal-front velocity during such a flow. Experiments were conducted by passing electric current through liquid gallium placed over similar to 170 nm thick, 500 mu m wide gold and platinum films of varying roughness. The ensuing flow, thus, resembles micro-fluidics behavior in an open-channel. The liquid-front velocity decreased linearly with the substrate surface roughness; this is attributed to the reduction in the effective electric field along the liquid metal-substrate interface with the substrate surface roughness. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4790182]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nontrivial electronic topology of a topological insulator is thus far known to display signatures in a robust metallic state at the surface. Here, we establish vibrational anomalies in Raman spectra of the bulk that signify changes in electronic topology: an E-g(2) phonon softens unusually and its linewidth exhibits an asymmetric peak at the pressure induced electronic topological transition (ETT) in Sb2Se3 crystal. Our first-principles calculations confirm the electronic transition from band to topological insulating state with reversal of parity of electronic bands passing through a metallic state at the ETT, but do not capture the phonon anomalies which involve breakdown of adiabatic approximation due to strongly coupled dynamics of phonons and electrons. Treating this within a four-band model of topological insulators, we elucidate how nonadiabatic renormalization of phonons constitutes readily measurable bulk signatures of an ETT, which will facilitate efforts to develop topological insulators by modifying a band insulator. DOI: 10.1103/PhysRevLett.110.107401