465 resultados para SINGLE GPS RECEIVER
Resumo:
This paper considers antenna selection (AS) at a receiver equipped with multiple antenna elements but only a single radio frequency chain for packet reception. As information about the channel state is acquired using training symbols (pilots), the receiver makes its AS decisions based on noisy channel estimates. Additional information that can be exploited for AS includes the time-correlation of the wireless channel and the results of the link-layer error checks upon receiving the data packets. In this scenario, the task of the receiver is to sequentially select (a) the pilot symbol allocation, i.e., how to distribute the available pilot symbols among the antenna elements, for channel estimation on each of the receive antennas; and (b) the antenna to be used for data packet reception. The goal is to maximize the expected throughput, based on the past history of allocation and selection decisions, and the corresponding noisy channel estimates and error check results. Since the channel state is only partially observed through the noisy pilots and the error checks, the joint problem of pilot allocation and AS is modeled as a partially observed Markov decision process (POMDP). The solution to the POMDP yields the policy that maximizes the long-term expected throughput. Using the Finite State Markov Chain (FSMC) model for the wireless channel, the performance of the POMDP solution is compared with that of other existing schemes, and it is illustrated through numerical evaluation that the POMDP solution significantly outperforms them.
Resumo:
Proofreading/editing in protein synthesis is essential for accurate translation of information from the genetic code. In this article we present a theoretical investigation of efficiency of a kinetic proofreading mechanism that employs hydrolysis of the wrong substrate as the discriminatory step in enzyme catalytic reactions. We consider aminoacylation of tRNA(Ile) which is a crucial step in protein synthesis and for which experimental results are now available. We present an augmented kinetic scheme and then employ methods of stochastic simulation algorithm to obtain time dependent concentrations of different substances involved in the reaction and their rates of formation. We obtain the rates of product formation and ATP hydrolysis for both correct and wrong substrates (isoleucine and valine in our case, respectively), in single molecular enzyme as well as ensemble enzyme kinetics. The present theoretical scheme correctly reproduces (i) the amplitude of the discrimination factor in the overall rates between isoleucine and valine which is obtained as (1.8x10(2)).(4.33x10(2)) = 7.8x10(4), (ii) the rates of ATP hydrolysis for both Ile and Val at different substrate concentrations in the aminoacylation of tRNA(Ile). The present study shows a non-michaelis type dependence of rate of reaction on tRNA(Ile) concentration in case of valine. The overall editing in steady state is found to be independent of amino acid concentration. Interestingly, the computed ATP hydrolysis rate for valine at high substrate concentration is same as the rate of formation of Ile-tRNA(Ile) whereas at intermediate substrate concentration the ATP hydrolysis rate is relatively low. We find that the presence of additional editing domain in class I editing enzyme makes the kinetic proofreading more efficient through enhanced hydrolysis of wrong product at the editing CP1 domain.
Resumo:
Crystals of a new nonlinear optical (NLO) material, viz., L-histidinium 2-nitrobenzoate (LHNB) (1) were grown by slow evaporation of an aqueous solution containing equimolar concentrations of L-histidine and 2-nitrobenzoic acid. The structure of the title compound which crystallizes in the non-centrosymmetric monoclinic space group P2(1) was elucidated using single crystal X-ray intensity data. The UV-Vis-NIR spectrum of 1 reveals its transparent nature while the vibrational spectra confirm the presence of the functional groups in 1. The thermal stability and second harmonic generation (SHG) conversion efficiency of 1 were also investigated. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
In this work, the grid mismatch problem for a single snapshot direction of arrival estimation problem is studied. We derive a Bayesian Cramer-Rao bound for the grid mismatch problem with the errors in variables model and propose a block sparse estimator for grid matching and sparse recovery.
Resumo:
Radical catalyzed thiol-ene reaction has become a useful alternative to the Huisgen-type azide-yne click reaction as it helps expand the variability in reaction conditions as well as the range of clickable entities. In this study, the direct generation of a hyperbranched polyether (HBPE) having decyl units at the periphery and a pendant allyl group on every repeat unit of the polymer backbone is described; the allyl groups serve as a reactive handle for postpolymerization modifications and permits the generation of a variety of internally functionalized HBPEs. In this design, the AB(2) monomer carries two decylbenzyl ether units (B-functionality), an aliphatic OH (A-functionality) and a pendant allyl group within the spacer segment; polymerization of the monomer readily occurs at 150 degrees C via melt transetherification process by continuous removal of 1-decanol under reduced pressure. The resulting HBPE has a hydrophobic periphery due to the presence of numerous decyl chains, while the allyl groups that remain unaffected during the melt polymerization provides an opportunity to install a variety of functional groups within the interior; thiol-ene click reaction with two different thiols, namely 3-mercaptopropionic acid and mercaptosuccinic acid, generated interesting amphiphilic structures. Preliminary field emission scanning electron microscope (FESEM) and Atomic Force Microscopy (AFM) imaging studies reveal the formation of fairly uniform spherical aggregates in water with sizes ranging from 200 to 400 nm; this suggests that these amphiphilic HBPs is able to reconfigure to generate jellyfish-like conformations that subsequently aggregate in an alkaline medium. The internal allyl functional groups were also used to generate intramolecularly core-crosslinked HBPEs, by the use of dithiol crosslinkers; gel permeation chromatography traces provided clear evidence for reduction in the size after crosslinking. In summary, we have developed a simple route to prepare core-clickable HBPEs and have demonstrated the quantitative reaction of the allyl groups present within the interior of the polymers; such HB polymeric systems that carry numerous functional groups within the core could have interesting applications in analyte sequestration and possibly sensing, especially from organic media. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4125-4135
Resumo:
P bodies are 100-300 nm sized organelles involved in mRNA silencing and degradation. A total of 60 human proteins have been reported to localize to P bodies. Several human SNPs contribute to complex diseases by altering the structure and function of the proteins. Also, SNPs alter various transcription factors binding, splicing and miRNA regulatory sites. Owing to the essential functions of P bodies in mRNA regulation, we explored computationally the functional significance of SNPs in 7 P body components such as XRN1, DCP2, EDC3, CPEB1, GEMIN5, STAU1 and TRIM71. Computational analyses of non-synonymous SNPs of these components was initiated using well utilized publicly available software programs such as the SIFT, followed by PolyPhen, PANTHER, MutPred, I-Mutant-2.0 and PhosSNP 1.0. Functional significance of noncoding SNPs in the regulatory regions were analysed using FastSNP. Utilizing miRSNP database, we explored the role of SNPs in the context that alters the miRNA binding sites in the above mentioned genes. Our in silico studies have identified various deleterious SNPs and this cataloguing is essential and gives first hand information for further analysis by in vitro and in vivo methods for a better understanding of maintenance, assembly and functional aspects of P bodies in both health and disease. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system's redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring.
Resumo:
In this paper, we propose low-complexity algorithms based on Monte Carlo sampling for signal detection and channel estimation on the uplink in large-scale multiuser multiple-input-multiple-output (MIMO) systems with tens to hundreds of antennas at the base station (BS) and a similar number of uplink users. A BS receiver that employs a novel mixed sampling technique (which makes a probabilistic choice between Gibbs sampling and random uniform sampling in each coordinate update) for detection and a Gibbs-sampling-based method for channel estimation is proposed. The algorithm proposed for detection alleviates the stalling problem encountered at high signal-to-noise ratios (SNRs) in conventional Gibbs-sampling-based detection and achieves near-optimal performance in large systems with M-ary quadrature amplitude modulation (M-QAM). A novel ingredient in the detection algorithm that is responsible for achieving near-optimal performance at low complexity is the joint use of a mixed Gibbs sampling (MGS) strategy coupled with a multiple restart (MR) strategy with an efficient restart criterion. Near-optimal detection performance is demonstrated for a large number of BS antennas and users (e. g., 64 and 128 BS antennas and users). The proposed Gibbs-sampling-based channel estimation algorithm refines an initial estimate of the channel obtained during the pilot phase through iterations with the proposed MGS-based detection during the data phase. In time-division duplex systems where channel reciprocity holds, these channel estimates can be used for multiuser MIMO precoding on the downlink. The proposed receiver is shown to achieve good performance and scale well for large dimensions.
Resumo:
In a wireless receiver, a down-converted RF signal undergoes a transient phase shift, when the gain state is changed to adjust for varying conditions in transmission and propagation. A method is developed, in which such phase shifts are detected asynchronously, and their undesirable effects on the bit error rate are corrected. The method was developed for and used in, the system-level characterization and calibration of a 65-nm CMOS UHF receiver. The phase-shifts associated with specific gain-state transitions were measured within a test framework, and used in the baseband signal processing blocks to compensate for errors, whenever the receiver anticipated a gain-state transition.
Resumo:
In this paper, an input receiver with a hysteresis characteristic that can work at voltage levels between 0.9 V and 5 V is proposed. The input receiver can be used as a wide voltage range Schmitt trigger also. At the same time, reliable circuit operation is ensured. According to the research findings, this is the first time a wide voltage range Schmitt trigger is being reported. The proposed circuit is compared with previously reported input receivers, and it is shown that the circuit has better noise immunity. The proposed input receiver ends the need for a separate Schmitt trigger and input buffer. The frequency of operation is also higher than that of the previously reported receiver. The circuit is simulated using HSPICE at 035-mu m standard thin oxide technology. Monte Carlo analysis is conducted at different process conditions, showing that the proposed circuit works well for different process conditions at different voltage levels of operation. A noise impulse of (V-CC/2) magnitude is added to the input voltage to show that the receiver receives the correct logic level even in the presence of noise. Here, V-CC is the fixed voltage supply of 3.3 V.
Resumo:
Super-resolution microscopy has tremendously progressed our understanding of cellular biophysics and biochemistry. Specifically, 4pi fluorescence microscopy technique stands out because of its axial super-resolution capability. All types of 4pi-microscopy techniques work well in conjugation with deconvolution techniques to get rid of artifacts due to side-lobes. In this regard, we propose a technique based on spatial filter in a 4pi-type-C confocal setup to get rid of these artifacts. Using a special spatial filter, we have reduced the depth-of-focus. Interference of two similar depth-of-focus beams in a 4 pi geometry result in substantial reduction of side-lobes. Studies show a reduction of side-lobes by 46% and 76% for single and two photon variant compared to 4pi - type - C confocal system. This is incredible considering the resolving capability of the existing 4pi - type - C confocal microscopy. Moreover, the main lobe is found to be 150 nm for the proposed spatial filtering technique as compared to 690 nm of the state-of-art confocal system. Reconstruction of experimentally obtained 2PE - 4pi data of green fluorescent protein (GFP)-tagged mitocondrial network shows near elimination of artifacts arising out of side-lobes. Proposed technique may find interesting application in fluorescence microscopy, nano-lithography, and cell biology. (C) 2013 AIP Publishing LLC.
Resumo:
In this paper optical code-division multiple-access (O-CDMA) packet network is considered, which offers inherent security in the access networks. The application of O-CDMA to multimedia transmission (voice, data, and video) is investigated. The simultaneous transmission of various services is achieved by assigning to each user unique multiple code signatures. Thus, by applying a parallel mapping technique, we achieve multi-rate services. A random access protocol is proposed, here, where all distinct codes are used, for packet transmission. The codes, Optical Orthogonal Code (OOC), or 1D codes and Wavelength/Time Single-Pulse-per-Row (W/T SPR), or 2D codes, are analyzed. These 1D and 2D codes with varied weight are used to differentiate the Quality of Service (QoS). The theoretical bit error probability corresponding to the quality of each service is established using 1D and 2D codes in the receiver noiseless case and compared. The results show that, using 2D codes QoS in multimedia transmission is better than using 1D codes.
Resumo:
A power scalable receiver architecture is presented for low data rate Wireless Sensor Network (WSN) applications in 130nm RF-CMOS technology. Power scalable receiver is motivated by the ability to leverage lower run-time performance requirement to save power. The proposed receiver is able to switch power settings based on available signal and interference levels while maintaining requisite BER. The Low-IF receiver consists of Variable Noise and Linearity LNA, IQ Mixers, VGA, Variable Order Complex Bandpass Filter and Variable Gain and Bandwidth Amplifier (VGBWA) capable of driving variable sampling rate ADC. Various blocks have independent power scaling controls depending on their noise, gain and interference rejection (IR) requirements. The receiver is designed for constant envelope QPSK-type modulation with 2.4GHz RF input, 3MHz IF and 2MHz bandwidth. The chip operates at 1V Vdd with current scalable from 4.5mA to 1.3mA and chip area of 0.65mm2.
Resumo:
This paper considers the design of a power-controlled reverse channel training (RCT) scheme for spatial multiplexing (SM)-based data transmission along the dominant modes of the channel in a time-division duplex (TDD) multiple-input and multiple-output (MIMO) system, when channel knowledge is available at the receiver. A channel-dependent power-controlled RCT scheme is proposed, using which the transmitter estimates the beamforming (BF) vectors required for the forward-link SM data transmission. Tight approximate expressions for 1) the mean square error (MSE) in the estimate of the BF vectors, and 2) a capacity lower bound (CLB) for an SM system, are derived and used to optimize the parameters of the training sequence. Moreover, an extension of the channel-dependent training scheme and the data rate analysis to a multiuser scenario with M user terminals is presented. For the single-mode BF system, a closed-form expression for an upper bound on the average sum data rate is derived, which is shown to scale as ((L-c - L-B,L- tau)/L-c) log logM asymptotically in M, where L-c and L-B,L- tau are the channel coherence time and training duration, respectively. The significant performance gain offered by the proposed training sequence over the conventional constant-power orthogonal RCT sequence is demonstrated using Monte Carlo simulations.
Resumo:
Single receive antenna selection (AS) allows single-input single-output (SISO) systems to retain the diversity benefits of multiple antennas with minimum hardware costs. We propose a single receive AS method for time-varying channels, in which practical limitations imposed by next-generation wireless standards such as training, packetization and antenna switching time are taken into account. The proposed method utilizes low-complexity subspace projection techniques spanned by discrete prolate spheroidal (DPS) sequences. It only uses Doppler bandwidth knowledge, and does not need detailed correlation knowledge. Results show that the proposed AS method outperforms ideal conventional SISO systems with perfect CSI but no AS at the receiver and AS using the conventional Fourier estimation/prediction method. A closed-form expression for the symbol error probability (SEP) of phase-shift keying (MPSK) with symbol-by-symbol receive AS is derived.