425 resultados para RM(rate monotonic)algorithm
Resumo:
This paper considers the high-rate performance of source coding for noisy discrete symmetric channels with random index assignment (IA). Accurate analytical models are developed to characterize the expected distortion performance of vector quantization (VQ) for a large class of distortion measures. It is shown that when the point density is continuous, the distortion can be approximated as the sum of the source quantization distortion and the channel-error induced distortion. Expressions are also derived for the continuous point density that minimizes the expected distortion. Next, for the case of mean squared error distortion, a more accurate analytical model for the distortion is derived by allowing the point density to have a singular component. The extent of the singularity is also characterized. These results provide analytical models for the expected distortion performance of both conventional VQ as well as for channel-optimized VQ. As a practical example, compression of the linear predictive coding parameters in the wideband speech spectrum is considered, with the log spectral distortion as performance metric. The theory is able to correctly predict the channel error rate that is permissible for operation at a particular level of distortion.
Resumo:
Precoding for multiple-input multiple-output (MIMO) antenna systems is considered with perfect channel knowledge available at both the transmitter and the receiver. For two transmit antennas and QAM constellations, a real-valued precoder which is approximately optimal (with respect to the minimum Euclidean distance between points in the received signal space) among real-valued precoders based on the singular value decomposition (SVD) of the channel is proposed. The proposed precoder is obtainable easily for arbitrary QAM constellations, unlike the known complex-valued optimal precoder by Collin et al. for two transmit antennas which is in existence for 4-QAM alone and is extremely hard to obtain for larger QAM constellations. The proposed precoding scheme is extended to higher number of transmit antennas on the lines of the E - d(min) precoder for 4-QAM by Vrigneau et al. which is an extension of the complex-valued optimal precoder for 4-QAM. The proposed precoder's ML-decoding complexity as a function of the constellation size M is only O(root M)while that of the E - d(min) precoder is O(M root M)(M = 4). Compared to the recently proposed X- and Y-precoders, the error performance of the proposed precoder is significantly better while being only marginally worse than that of the E - d(min) precoder for 4-QAM. It is argued that the proposed precoder provides full-diversity for QAM constellations and this is supported by simulation plots of the word error probability for 2 x 2, 4 x 4 and 8 x 8 systems.
Optimised form of acceleration correction algorithm within SPH-based simulations of impact mechanics
Resumo:
In the context of SPH-based simulations of impact dynamics, an optimised and automated form of the acceleration correction algorithm (Shaw and Reid, 2009a) is developed so as to remove spurious high frequency oscillations in computed responses whilst retaining the stabilizing characteristics of the artificial viscosity in the presence of shocks and layers with sharp gradients. A rational framework for an insightful characterisation of the erstwhile acceleration correction method is first set up. This is followed by the proposal of an optimised version of the method, wherein the strength of the correction term in the momentum balance and energy equations is optimised. For the first time, this leads to an automated procedure to arrive at the artificial viscosity term. In particular, this is achieved by taking a spatially varying response-dependent support size for the kernel function through which the correction term is computed. The optimum value of the support size is deduced by minimising the (spatially localised) total variation of the high oscillation in the acceleration term with respect to its (local) mean. The derivation of the method, its advantages over the heuristic method and issues related to its numerical implementation are discussed in detail. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the image reconstruction using the fan-beam filtered backprojection (FBP) algorithm with no backprojection weight from windowed linear prediction (WLP) completed truncated projection data. The image reconstruction from truncated projections aims to reconstruct the object accurately from the available limited projection data. Due to the incomplete projection data, the reconstructed image contains truncation artifacts which extends into the region of interest (ROI) making the reconstructed image unsuitable for further use. Data completion techniques have been shown to be effective in such situations. We use windowed linear prediction technique for projection completion and then use the fan-beam FBP algorithm with no backprojection weight for the 2-D image reconstruction. We evaluate the quality of the reconstructed image using fan-beam FBP algorithm with no backprojection weight after WLP completion.
Resumo:
Energy Harvesting (EH) nodes, which harvest energy from the environment in order to communicate over a wireless link, promise perpetual operation of a wireless network with battery-powered nodes. In this paper, we address the throughput optimization problem for a rate-adaptive EH node that chooses its rate from a set of discrete rates and adjusts its power depending on its channel gain and battery state. First, we show that the optimal throughput of an EH node is upper bounded by the throughput achievable by a node that is subject only to an average power constraint. We then propose a simple transmission scheme for an EH node that achieves an average throughput close to the upper bound. The scheme's parameters can be made to account for energy overheads such as battery non-idealities and the energy required for sensing and processing. The effect of these overheads on the average throughput is also analytically characterized.
Resumo:
It has been shown recently that the maximum rate of a 2-real-symbol (single-complex-symbol) maximum likelihood (ML) decodable, square space-time block codes (STBCs) with unitary weight matrices is 2a/2a complex symbols per channel use (cspcu) for 2a number of transmit antennas [1]. These STBCs are obtained from Unitary Weight Designs (UWDs). In this paper, we show that the maximum rates for 3- and 4-real-symbol (2-complex-symbol) ML decodable square STBCs from UWDs, for 2a transmit antennas, are 3(a-1)/2a and 4(a-1)/2a cspcu, respectively. STBCs achieving this maximum rate are constructed. A set of sufficient conditions on the signal set, required for these codes to achieve full-diversity are derived along with expressions for their coding gain.
Resumo:
It is well known that the space-time block codes (STBCs) from complex orthogonal designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD). The weight matrices of the square CODs are all unitary and obtainable from the unitary matrix representations of Clifford Algebras when the number of transmit antennas n is a power of 2. The rate of the square CODs for n = 2(a) has been shown to be a+1/2(a) complex symbols per channel use. However, SSD codes having unitary-weight matrices need not be CODs, an example being the minimum-decoding-complexity STBCs from quasi-orthogonal designs. In this paper, an achievable upper bound on the rate of any unitary-weight SSD code is derived to be a/2(a)-1 complex symbols per channel use for 2(a) antennas, and this upper bound is larger than that of the CODs. By way of code construction, the interrelationship between the weight matrices of unitary-weight SSD codes is studied. Also, the coding gain of all unitary-weight SSD codes is proved to be the same for QAM constellations and conditions that are necessary for unitary-weight SSD codes to achieve full transmit diversity and optimum coding gain are presented.
Resumo:
Simple algorithms have been developed to generate pairs of minterms forming a given 2-sum and thereby to test 2-asummability of switching functions. The 2-asummability testing procedure can be easily implemented on the computer. Since 2-asummability is a necessary and sufficient condition for a switching function of upto eight variables to be linearly separable (LS), it can be used for testing LS switching functions of upto eight variables.
Resumo:
Taking polycrystalline cadmium as an example and by utilizing the predicted temperature or strain rate-dependence of the (Hall-Petch) stress-grain size parameters, a reasonably quantitative explanation is given for the grain size dependence of apparent activation volume measurements. The explanation involves the theoretical relation of these measurements to single-crystal measurements.
Resumo:
A finite element method for solving multidimensional population balance systems is proposed where the balance of fluid velocity, temperature and solute partial density is considered as a two-dimensional system and the balance of particle size distribution as a three-dimensional one. The method is based on a dimensional splitting into physical space and internal property variables. In addition, the operator splitting allows to decouple the equations for temperature, solute partial density and particle size distribution. Further, a nodal point based parallel finite element algorithm for multi-dimensional population balance systems is presented. The method is applied to study a crystallization process assuming, for simplicity, a size independent growth rate and neglecting agglomeration and breakage of particles. Simulations for different wall temperatures are performed to show the effect of cooling on the crystal growth. Although the method is described in detail only for the case of d=2 space and s=1 internal property variables it has the potential to be extendable to d+s variables, d=2, 3 and s >= 1. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We consider the problem of computing a minimum cycle basis in a directed graph G. The input to this problem is a directed graph whose arcs have positive weights. In this problem a {- 1, 0, 1} incidence vector is associated with each cycle and the vector space over Q generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of weights of the cycles is minimum is called a minimum cycle basis of G. The current fastest algorithm for computing a minimum cycle basis in a directed graph with m arcs and n vertices runs in O(m(w+1)n) time (where w < 2.376 is the exponent of matrix multiplication). If one allows randomization, then an (O) over tilde (m(3)n) algorithm is known for this problem. In this paper we present a simple (O) over tilde (m(2)n) randomized algorithm for this problem. The problem of computing a minimum cycle basis in an undirected graph has been well-studied. In this problem a {0, 1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of the graph. The fastest known algorithm for computing a minimum cycle basis in an undirected graph runs in O(m(2)n + mn(2) logn) time and our randomized algorithm for directed graphs almost matches this running time.
Resumo:
Genetic Algorithms (GAs) are recognized as an alternative class of computational model, which mimic natural evolution to solve problems in a wide domain including machine learning, music generation, genetic synthesis etc. In the present study Genetic Algorithm has been employed to obtain damage assessment of composite structural elements. It is considered that a state of damage can be modeled as reduction in stiffness. The task is to determine the magnitude and location of damage. In a composite plate that is discretized into a set of finite elements, if a jth element is damaged, the GA based technique will predict the reduction in Ex and Ey and the location j. The fact that the natural frequency decreases with decrease in stiffness is made use of in the method. The natural frequency of any two modes of the damaged plates for the assumed damage parameters is facilitated by the use of Eigen sensitivity analysis. The Eigen value sensitivities are the derivatives of the Eigen values with respect to certain design parameters. If ωiu is the natural frequency of the ith mode of the undamaged plate and ωid is that of the damaged plate, with δωi as the difference between the two, while δωk is a similar difference in the kth mode, R is defined as the ratio of the two. For a random selection of Ex,Ey and j, a ratio Ri is obtained. A proper combination of Ex,Ey and j which makes Ri−R=0 is obtained by Genetic Algorithm.
Resumo:
Lithium iron phosphate (LiFePO4) electronically wired by multi-walled carbon nanotubes (MWCNTs) and in-situ transformed graphitic carbon for lithium-ion batteries are discussed here. Presence of MWCNTs up to a maximum of 0.5% in porous LiFePO4 (abbreviated as LFP-CNT) resulted in remarkable reversible cyclability and rate capability compared to LFP coated with highly disordered carbon (abbreviated as LFP-C). In the current range (30-1500) mAg(-1), specific capacity of LFP-CNT (approximate to 150-50 mAhg(-1)) is observed to be always higher compared to LFP-C (approximate to 120-0 mAhg(-1)). At higher currents of 250-1500 mAg(-1) LFP-C performed poorly compared to LFP-CNT. LFP-C showed considerable decay in capacity with increase in cycle number at intermediate high currents (approximate to 250 mAg(-1)) whereas at very high currents (approximate to 750 mAg(-1)) it is nearly zero. The LFP-CNT showed no such detrimental behavior in battery performance. The exemplary performance of the LFP-CNT is attributed to combination of both enhanced LFP structural stability, as revealed by Raman spectra and formation of an efficient percolative network of carbon nanotubes which during the course of galvanostatic cycling gets gradually transformed to graphitic carbon. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.015204jes] All rights reserved.