418 resultados para FLOW PHANTOM EXPERIMENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear stability and the nonmodal transient energy growth in compressible plane Couette flow are investigated for two prototype mean flows: (a) the uniform shear flow with constant viscosity, and (b) the nonuniform shear flow with stratified viscosity. Both mean flows are linearly unstable for a range of supersonic Mach numbers (M). For a given M, the critical Reynolds number (Re) is significantly smaller for the uniform shear flow than its nonuniform shear counterpart; for a given Re, the dominant instability (over all streamwise wave numbers, α) of each mean flow belongs to different modes for a range of supersonic M. An analysis of perturbation energy reveals that the instability is primarily caused by an excess transfer of energy from mean flow to perturbations. It is shown that the energy transfer from mean flow occurs close to the moving top wall for “mode I” instability, whereas it occurs in the bulk of the flow domain for “mode II.” For the nonmodal transient growth analysis, it is shown that the maximum temporal amplification of perturbation energy, Gmax, and the corresponding time scale are significantly larger for the uniform shear case compared to those for its nonuniform counterpart. For α=0, the linear stability operator can be partitioned into L∼L̅ +Re2 Lp, and the Re-dependent operator Lp is shown to have a negligibly small contribution to perturbation energy which is responsible for the validity of the well-known quadratic-scaling law in uniform shear flow: G(t∕Re)∼Re2. In contrast, the dominance of Lp is responsible for the invalidity of this scaling law in nonuniform shear flow. An inviscid reduced model, based on Ellingsen-Palm-type solution, has been shown to capture all salient features of transient energy growth of full viscous problem. For both modal and nonmodal instability, it is shown that the viscosity stratification of the underlying mean flow would lead to a delayed transition in compressible Couette flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CFD investigations are carried out to study the heat flux and temperature distribution in the calandria using a 3–Dimensional RANS code. Internal flow computations and experimental studies are carried out for a calandria embedded with a matrix of tubes working together as a reactor. Numerical investigations are carried on the Calandria reactor vessel with horizontal inlets and outlets located on top and the bottom to study the flow pattern and the associated temperature distribution. The computations have been carried out to simulate fluid flow and convective heat transfer for assigned near–to working conditions with different moderator injection rates and reacting heat fluxes. The results of computations provide an estimate of the tolerance bands for safe working limits for the heat dissipation at different working conditions by virtue of prediction of the hot spots in the calandria. The isothermal CFD results are validated by a set of experiments on a specially designed scaled model conducted over a range of flows and simulation parameters. The comparison of CFD results with experiments show good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First systematic spin probe ESR study of water freezing has been conducted using TEMPOL and TEMPO as the probes. The spin probe signature of the water freezing has been described in terms of the collapse of narrow triplet spectrum into a single broad line. This spin probe signature of freezing has been observed at an anomalously low temperature when a milimoler solution of TEMPOL is slowly cooled from room temperature. A systematic observation has revealed a spin probe concentration dependence of these freezing and respective melting points. These results can be explained in terms of localization of spin probe and liquid water,most probably in the interstices of ice grains, in an ice matrix. The lowering of spin probe freezing point, along with the secondary evidences, like spin probe concentration dependence of peak-to-peak width in frozen limit signal, indicates a possible size dependence of these localizations/entrapments with spin probe concentration. A weak concentration dependence of spin probe assisted freezing and melting points, which has been observed for TEMPO in comparison to TEMPOL, indicates different natures of interactions with water of these two probes. This view is also supported by the relaxation behavior of the two probes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectra of molecules oriented in liquid crystalline media are dominated by partially averaged dipolar couplings. In the 13C–1H HSQC, due to the inefficient hetero-nuclear dipolar decoupling in the indirect dimension, normally carried out by using a π pulse, there is a considerable loss of resolution. Furthermore, in such strongly orienting media the 1H–1H and 13C–1H dipolar couplings leads to fast dephasing of transverse magnetization causing inefficient polarization transfer and hence the loss of sensitivity in the indirect dimension. In this study we have carried out 13C–1H HSQC experiment with efficient polarization transfer from 1H to 13C for molecules aligned in liquid crystalline media. The homonuclear dipolar decoupling using FFLG during the INEPT transfer delays and also during evolution period combined with the π pulse heteronuclear decoupling in the t1 period has been applied. The studies showed a significant reduction in partially averaged dipolar couplings and thereby enhancement in the resolution and sensitivity in the indirect dimension. This has been demonstrated on pyridazine and pyrimidine oriented in the liquid crystal. The two closely resonating carbons in pyrimidine are better resolved in the present study compared to the earlier work [H.S. Vinay Deepak, Anu Joy, N. Suryaprakash, Determination of natural abundance 15N–1H and 13C–1H dipolar couplings of molecules in a strongly orienting media using two-dimensional inverse experiments, Magn. Reson. Chem. 44 (2006) 553–565].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compiler optimizations need precise and scalable analyses to discover program properties. We propose a partially flow-sensitive framework that tries to draw on the scalability of flow-insensitive algorithms while providing more precision at some specific program points. Provided with a set of critical nodes — basic blocks at which more precise information is desired — our partially flow-sensitive algorithm computes a reduced control-flow graph by collapsing some sets of non-critical nodes. The algorithm is more scalable than a fully flow-sensitive one as, assuming that the number of critical nodes is small, the reduced flow-graph is much smaller than the original flow-graph. At the same time, a much more precise information is obtained at certain program points than would had been obtained from a flow-insensitive algorithm.