400 resultados para Cosmic ray experiments


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cementite dissolution in cold-drawn pearlitic steel (0.8 wt.% carbon) wires has been studied by quantitative X-ray diffraction (XRD) and Mossbauer spectroscopy up to drawing strain 1.4. Quantification of cementite-phase fraction by Rietveld analysis has confirmed more than 50% dissolution of cementite phase at drawing strain 1.4. It is found that the lattice parameter of the ferrite phase determined by Rietveld refinement procedure remains nearly unchanged even after cementite dissolution. This confirms that the carbon atoms released after cementite dissolution do not dissolve in the ferrite lattice as Fe-C interstitial solid solution. Detailed analysis of broadening of XRD line profiles for the ferrite phase shows high density of dislocations (approximate to 10(15)/m(2)) in the ferrite matrix at drawing strain 1.4. The results suggest a dominant role of 111 screw dislocations in the cementite dissolution process. Post-deformation heat treatment leads to partial annihilation of dislocations and restoration of cementite phase. Based on these experimental observations, further supplemented by TEM studies, we have suggested an alternative thermodynamic mechanism of the dissolution process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We here report what we believe to be an important method for studying hydrogen bonding in systems containing a paramagnetic centre. The technique of electron-nuclear double resonance ( ENDOR) has been applied to study the hydrogen-bond network around the AsO44-. centre in X-ray irradiated KH2AsO4. ENDOR transitions from several sets of hydrogen nuclei surrounding the centre were observed at 4.2 degrees K and the spectra for two sets of neighbouring nuclei are identified. The angular dependences for these spectra are fitted with a spin-Hamiltonian to obtain the isotropic and anisotropic magnetic hyperfine constants. The results are discussed in terms of the available spectroscopic and crystallographic data on KH2AsO4 and the order-disorder model of ferroelectrictricity in this class of crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a detailed timing and spectral analysis of the Be X-ray binary SW J2000.6+3210 discovered by the Burst Alert Telescope Galactic plane survey. Two Suzaku observations of the source made at six months interval, reveal pulsations at similar to 890 s for both observations with a much weaker pulse fraction in the second one. Pulsations are clearly seen in the energy band of 0.3-10 keV of X-ray Imaging Spectrometer for both observations and at high energies up to 40 keV for the second observation. The broad-band X-ray spectrum is consistent with a power-law and high-energy cut-off model along with a hot blackbody component. No change in spectral parameters is detected between the observations. We have also analysed several short observations of the source with Swift/XRT and detected only a few per cent variation in flux around a mean value of 3.5 x 10(-11) erg cm(-2) s(-1). The results indicate that SW J2000.6+3210 is a member of persistent Be X-ray binaries which have the same broad characteristics as this source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy research is to a large extent materials research, encompassing the physics and chemistry of materials, including their synthesis, processing toward components and design toward architectures, allowing for their functionality as energy devices, extending toward their operation parameters and environment, including also their degradation, limited life, ultimate failure and potential recycling. In all these stages, X-ray and electron spectroscopy are helpful methods for analysis, characterization and diagnostics for the engineer and for the researcher working in basic science.This paper gives a short overview of experiments with X-ray and electron spectroscopy for solar energy and water splitting materials and addresses also the issue of solar fuel, a relatively new topic in energy research. The featured systems are iron oxide and tungsten oxide as photoanodes, and hydrogenases as molecular systems. We present surface and subsurface studies with ambient pressure XPS and hard X-ray XPS, resonant photoemission, light induced effects in resonant photoemission experiments and a photo-electrochemical in situ/operando NEXAFS experiment in a liquid cell, and nuclear resonant vibrational spectroscopy (NRVS). (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structures of Nd1-xYxMnO3 (x=0-0.5) were studied using X-ray absorption near-edge structure (XANES) at the Mn L-3,L-2- and O K-edge along with valence-band photoemission spectroscopy (VB-PES). The systematic increase in white-line intensity of the Mn L-3,L-2-edge with doping, suggests a decrease in the occupancy of Mn 3d orbitals. The O K-edge XANES shows a depletion of unoccupied states above the Fermi energy. The changes in the O K-edge spectra due to doping reflects an increase in the Jahn-Teller distortion. The VB-PES shows broadening of the features associated with Mn 3d and O 2p hybridized states and the shift of these features to a slightly higher binding energy in agreement with our GGA + U calculations. The system shows a net shift of the occupied and unoccupied states away from the Fermi energy with doping. The shift in theoretical site-projected density of states of x=0.5 composition with respect to x=0 suggest a subtle change from a charge transfer to Mott-Hubbard type insulator. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrochlorothiazide (HCT), C7H8ClN3O4S2, is a diuretic BCS (Biopharmaceutics Classification System) class IV drug which has primary and secondary sulfonamide groups. To modify the aqueous solubility of the drug, co-crystals with biologically safe co-formers were screened. Multi-component molecular crystals of HCT were prepared with nicotinic acid, nicotinamide, succinamide, p-aminobenzoic acid, resorcinol and pyrogallol using liquid-assisted grinding. The co-crystals were characterized by FT-IR spectroscopy, powder X-ray diffraction (PXRD) and differential scanning calorimetry. Single crystal structures were obtained for four of them. The N-H center dot center dot center dot O sulfonamide catemer synthons found in the stable polymorph of pure HCT are replaced in the co-crystals by drug-co-former heterosynthons. Isostructural co-crystals with nicotinic acid and nicotinamide are devoid of the common sulfonamide dimer/catemer synthons. Solubility and stability experiments were carried out for the co-crystals in water (neutral pH) under ambient conditions. Among the six binary systems, the co-crystal with p-aminobenzoic acid showed a sixfold increase in solubility compared with pure HCT, and stability up to 24 h in an aqueous medium. The co-crystals with nicotinamide, resorcinol and pyrogallol showed only a 1.5-2-fold increase in solubility and transformed to HCT within 1 h of the dissolution experiment. An inverse correlation is observed between the melting points of the co-crystals and their solubilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work demonstrates the feasibility of mesoscale (100 μm to mm) punching of multiple holes of intricate shapes in metals. Analytical modeling, finite element (FE)simulation, and experimentations are used in this work. Two dimensional FE simulations in ABAQUS were done with an assumed material modeling and plane-strain condition. A known analytical model was used and compared with the ABAQUS simulation results to understand the effects of clearance between the punch and the die. FE simulation in ABAQUS was done for different clearances and corner radii at punch, die, and holder. A set of punches and dies were used to punch out a miniature spring-steel gripper. Comparison of compliant grippers manufactured by wire-cut electro discharge machining(EDM) and punching shows that realizing sharp interior and re-entrant corners by punching is not easy to achieve. Punching of circular holes with 5 mm and 2.5 mm diameter is achieved. The possibility of realizing meso-scale parts with complicated shapes through punching is demonstrated in this work; and some strategies are suggested for improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper analyses the results of experiments on the propagation rate in a fuel bed under gasification conditions in a co-current reactor configuration. Experiments using wood chips with different values of moisture content have been conducted under gasification conditions. The influence of air mass flux on the propagation rate, peak temperature and gas quality is investigated. It is observed from the experiments that the flame front propagation rate initially increases as the air mass flux increased, reaching a peak propagation rate, and further increase in the air mass flux results in a decrease in the propagation rate. However, the bed movement increases with the increase in air mass flux. The experimental results provide an understanding on influence of the fuel properties on propagation front. The surface area per unit volume of the particles in the packed bed plays an important role in the propagation rate. It has been argued that the flaming pyrolysis contributes towards the flame propagation as opposed to the overall combustion process in a packed bed. The calorific value of the producer gas generated is nearly the same over the entire range of air mass flux for bone-dry and 10% moist wood. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptide based self assembled nanostructures have attracted growing interest in recent years due to their numerous potential applications particularly in biomedical sciences. Di-peptide Phe-Phe was shown previously to self-assemble into nanotube like structures. In this work, we studied the affect of peptide backbone length and conformational flexibility on the self assembly process by using two dipeptides based on the Phe-Phe backbone (beta Phe-Phe and beta Phe-Delta Phe): one containing a flexible beta Phe amino acid, and the other containing both a flexible bPhe as well as a backbone constraining Alpha Phe (alpha,beta-dehydrophenylalanine) amino acid. Electron microscopy and X-ray diffraction experiments revealed that these new di-peptides can self-assemble into nanotubes having different properties than the native Phe-Phe nanotubes. These nanotubes were stable over a broad range of temperatures and the introduction of non-natural amino acids provided them with stability against the action of nonspecific proteases. Moreover, these dipeptides showed no cytotoxicity towards HeLa and L929 cells, and were able to encapsulate small drug molecules. We further showed that anticancerous drug mitoxantrone was more efficient in killing HeLa and B6F10 cells when entrapped in nanotubes as compared to free mitoxantrone. Therefore, these beta-phenylalanine and alpha, beta-dehydrophenylalanine containing dipeptide nanotubes may be useful in the development of biocompatible and proteolytically stable drug delivery vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligational behaviour of (E)-2-amino-N'-1-(2-hydroxyphenyl)ethylidene]benzohydrazide (Aheb) towards later 3d metal ionscopper(II), cobalt(II), manganese(II), zinc(II), cadmium(II) and nickel(IV)] has been studied. Their structures have been elucidated on the basis of spectral (IR, H-1 NMR, UV-Vis, EPR and FAB-mass), elemental analyses, conductance measurements, magnetic moments, and thermal studies. During complexation Ni(II) ion has got oxidized to Ni(IV). The changes in the bond parameters of the ligand on complexation has been discussed by comparing the crystal structure of the ligand with that of its Ni(IV) complex. The X-ray single crystal analysis of Ni(aheb)(2)]Cl-2 center dot 4H(2)O has confirmed an octahedral geometry around the metal ion. EPR spectra of the Cu(II) complex in polycrystalline state at room (300 K) and liquid nitrogen temperature (77 K) were recorded and their salient features are reported. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shock-Boundary Layer Interaction (SBLI) often occurs in supersonic/hypersonic flow fields. Especially when accompanied by separation (termed strong interaction), the SBLI phenomena largely affect the performance of the systems where they occur, such as scramjet intakes, thus often demanding the control of the interaction. Experiments on the strong interaction between impinging shock wave and boundary layer on a flat plate at Mach 5.96 are carried out in IISc hypersonic shock tunnel HST-2. The experiments are performed at moderate flow total enthalpy of 1.3 MJ/kg and freestream Reynolds number of 4 million/m. The strong shock generated by a wedge (or shock generator) of large angle 30.96 degrees to the freestream is made to impinge on the flat plate at 95 mm (inviscid estimate) from the leading edge, due to which a large separation bubble of length (75 mm) comparable to the distance of shock impingement from the leading edge is generated. The experimental simulation of such large separation bubble with separation occurring close to the leading edge, and its control using boundary layer bleed (suction and tangential blowing) at the location of separation, are demonstrated within the short test time of the shock tunnel (similar to 600 mu s) from time resolved schlieren flow visualizations and surface pressure measurements. By means of suction - with mass flow rate one order less than the mass flow defect in boundary layer - a reduction in separation length by 13.33% was observed. By the injection of an array of (nearly) tangential jets in the direction of mainstream (from the bottom of the plate) at the location of separation - with momentum flow rate one order less than the boundary layer momentum flow defect - 20% reduction in separation length was observed, although the flow field was apparently unsteady. (C) 2014 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insertion reactions of six-membered cyclopalladated N,N',N''-triarylguanidines, kappa(2)(C,N)Pd(mu-Br)](2) with various alkynes in CH2Cl2 under ambient conditions afforded diinserted eight-membered palladacycles, (kappa(2)(C,N):eta(2)(C=C)-PdBr] (1-11), in high yield (76-96%), while insertion reactions of six-membered cyclopalladated N,N',N''-triarylguanidines, kappa(2)(C,N)Pd(Lewis base)Br] (VI-XI), with various alkynes under the aforementioned conditions afforded monoinserted six-membered palladacycles, kappa(2)(C,N)-Pd(Lewis base)Br] (12-21), in high yield (81-91%) except for 14 (23%). The insertion reaction of VI with 2 equiv of dimethyl acetylenedicarboxylate (DMAD) and the insertion reaction of 12 with 1 equiv of DMAD in CH2Cl2 under ambient conditions resulted in the formation of a diinserted zwitterionic five-membered palladacycle, kappa(2)(C,C)Pd(2,6-lutidine)Br] (22), in 76% and 70% yields, respectively. Palladacycle 22 upon reaction with AgOTf in wet MeCN afforded the ionic palladacycle kappa(2)(C,C)Pd(2,6-lutidine)(H2O)]OTf] (23) in 78% yield. The ring size of the ``kappa(2)(C,N)Pd]'' unit in the structurally characterized diinserted palladacycles (1 center dot 2CH(2)Cl(2)center dot H2O, 2, 5, and 7), and monoinserted palladacycles (17, 18, and 20 center dot C7H8 H2O) is smaller than that anticipated for mono- and diinserted palladacycles, and this feature is mainly ascribed to the proclivity of III-XI to undergo ring contraction cum amine-imine tautomerization upon alkyne insertion. Palladacycle 22 represents the first diinserted product obtained in alkyne insertion reactions of kappa(2)(C,N)Pd(Lewis base)X] type palladarycles. The molecular structure of 22 center dot H2O determined by X-ray diffraction indicates that the positive charge on the guanidinium moiety is balanced by the negative charge on the palladium atom and thus represents the first structurally characterized zwitterionic palladacycle to be reported in alkyne insertion chemistry. Plausible mechanisms of formation of 12-21 and 22 have been outlined. The presence of more than one species in solution for some of the palladacycles in the series 1-7 and 12-21 was explained by invoking the C-N single-bond rotation of the CN3 unit of the guanidine moiety, while this process in conjunction with Pd-N(lutidine) bond rotation was invoked to explain the presence of four isomers of 15, as studied with the aid of variable-concentration H-1 NMR experiments carried out for 14 and 15.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polarization sharing technique is utilized in gradient based slice selective experiments to transfer polarization from unutilized protons to selectively excited protons. This facilitates rapid data acquisition without any customary inter-scan relaxation delay, resulting in an average of 2-fold sensitivity enhancement per unit time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with different surface-functionalized multiwall carbon nanotubes (MWNTs) were prepared by solution blending to design materials with tunable EMI (electromagnetic interference) shielding. Different MWNTs like pristine, amine (similar to NH2), and carboxyl acid (similar to COOH) functionalized were incorporated in the polymer by solution blending. The specific interaction driven localization of MWNTs in the blend during annealing was monitored using contact mode AFM (atomic force microscopy) on thin films. Surface composition of the phase separated blends was further evaluated using X-ray photoelectron spectroscopy (XPS). The localization of MWNTs in a given phase in the bulk was further supported by selective dissolution experiments. Solution-casted PS/PMMA (50/50, wt/wt) blend exhibited a cocontinuous morphology on annealing for 30 min, whereas on longer annealing times it coarsened into matrix-droplet type of morphology. Interestingly, both pristine MWNTs and NH2-MWNTs resulted in interconnected structures of PMMA in PS matrix upon annealing, whereas COOH-MWNTs were localized in the PMMA droplets. Room-temperature electrical conductivity and electromagnetic shielding effectiveness (SE) were measured in a broad range of frequency. It was observed that both electrical conductivity and SE were strongly contingent on the type of surface functional groups on the MWNTs. The thermal conductivity of the blends was measured with laser flash technique at different temperatures. Interestingly, the SE for blends with pristine and NH2-MWNTs was >-24 dB at room temperature, which is commercially important, and with very marginal variation in thermal conductivity in the temperature range of 303-343 K. The gelation of MWNTs in the blends resulted in a higher SE than those obtained using the composites.