537 resultados para Atoms.
Resumo:
The non-H atoms of the title compound, C(11)H(6)BrFO(3), are essentially coplanar (r.m.s. deviation for all non-H atoms = 0.074 angstrom). In the crystal, the molecules are linked by C-H center dot center dot center dot O and C-H center dot center dot center dot Br interactions.
Resumo:
The potential energy surfaces of both neutral and dianionic SnC(2)P(2)R(2) (R=H, tBu) ring systems have been explored at the B3PW91/LANL2DZ (Sn) and 6-311 + G* (other atoms) level. In the neutral isomers the global minimum is a nido structure in which a 1,2-diphosphocyclobutadiene ring (1,2-DPCB) is capped by the Sn. Interestingly, the structure established by Xray diffraction analysis, for R=tBu, is a 1,3-DPCB ring capped by Sn and it is 2.4 kcal mol(-1) higher in energy than the 1,2-DPCB ring isomer. This is possibly related to the kinetic stability of the 1,3-DPCB ring, which might originate from the synthetic precursor ZrCp(2)tBu(2)C(2)P(2). In the case of the dianionic isomers we observe only a 6 pi-electron aromatic structure as the global minimum, similarly to the cases of our previously reported results with other types of heterodiphospholes.([1,4,19]) The existence of large numbers of cluster-type isomers in neutral and 6 pi-planar structures in the dianions SnC(2)P(2)R(2)(2-) (R=H, tBu) is due to 3D aromaticity in neutral clusters and to 2D pi aromaticity of the dianionic rings. Relative energies of positional isomers mainly depend on: 1) the valency and coordination number of the Sn centre, 2) individual bond strengths, and 3) the steric effect of tBu groups. A comparison of neutral stannadiphospholes with other structurally related C(5)H(5)(+) analogues indicates that Sn might be a better isolobal analogue to P(+) than to BH or CH(+). The variation in global minima in these C(5)H(5)(+) analogues is due to characteristic features such as 1) the different valencies of C, B, P and Sn, 2) the electron deficiency of B, 3) weaker p pi-p pi bonding by P and Sn atoms, and 4) the tendency of electropositive elements to donate electrons to nido clusters. Unlike the C5H5+ systems, all C(5)H(5)(-) analogues have 6 pi-planar aromatic structures as global minima. The differences in the relative ordering of the positional isomers and ligating properties are significant and depend on 1) the nature of the pi orbitals involved, and 2) effective overlap of orbitals.
Synthesis, Structure, Negative Thermal Expansion, and Photocatalytic Property of Mo Doped ZrV(2)O(7)
Resumo:
A new series of compounds identified in the phase diagram of ZrO(2)-V(2)O(8)-MoO(3) have been synthesized via the solution combustion method. Single crystals of one of the compounds in the series, ZrV(1.50)Mo(0.50)O(7.25), were grown by the melt-cool technique from the starting materials with double the MoO(3) quantity. The room temperature average crystal structure of the grown crystals was solved using the single crystal X-ray diffraction technique. The crystals belong to the cubic crystal system, space group Pa (3) over bar (No. 205) with a = 8.8969 (4) angstrom, V = 704.24 (6) angstrom(3), and Z = 4. The final R(1) value of 0.0213 was achieved for 288 independent reflections during the structure refinement. The Zr(4+) occupies the special position (4a) whereas V(5+) and Mo(6+) occupy two unique (8c) Wyckoff positions. Two fully occupied O atoms, (24d) and (4b), one partially occupied 0 atom (8c) have been identified for this molybdovanadate, which is a unique feature for these crystals. The structure is related to both ZrV(2)O(7) and cubic ZrMo(2)O(8). The temperature dependent single crystal studies show negative thermal expansion above 370 K. The compounds have been characterized by powder X-ray diffraction, solid-state UV-vis diffuse reflectance spectra, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The photocatalytic activity of these compounds has been investigated for the degradation of various dyes, and these compounds show specificity toward the degradation of non-azoic dyes.
Resumo:
The Ag-Ni system is characterized by large differences in atomic sizes (14%) and a positive heat of mixing (+23 kJ mol(-1)). The binary equilibrium diagram for this system therefore exhibits a large miscibility gap in both solid and liquid state. This paper explores the size-dependent changes in microstructure and the suppression of the miscibility gap which occurs when free alloy particles of nanometer size are synthesized by co-reduction of Ag and Ni metal precursors. The paper reports that complete mixing between Ag and Ni atoms could be achieved for smaller nanoparticles (<7 nm). These particles exhibit a single-phase solid solution with face-centered cubic (fcc) structure. With increase in size, the nanoparticles revealed two distinct regions. One of the regions is composed of pure Ag. This region partially surrounds a region of fcc solid solution at an early stage of decomposition. Experimental observations were compared with the results obtained from the thermodynamic calculations, which compared the free energies corresponding to a physical mixture of pure Ag and Ni phases and a fcc Ag-Ni solid solution for different particle sizes. Results from the theoretical calculations revealed that, for the Ag-Ni system, solid solution was energetically preferred over the physical mixture configuration for particle sizes of 7 nm and below. The experimentally observed two-phase microstructure for larger particles was thus primarily due to the growth of Ag-rich regions epitaxially on initially formed small fcc Ag-Ni nanoparticles. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Gold nanoparticles with average diameters in the range 2.515 nm, prepared at the organic/aqueous interface by using tetrakis( hydroxymethyl) phosphonium chloride (THPC) as reducing agent, exhibit ferromagnetism whereby the saturation magnetization M(S) increases with decreasing diameter and varies linearly with the fraction of surface atoms. The value of M(S) is higher when the particles are present as a film instead of as a sol. Capping with strongly interacting ligands such as alkane thiols results in a higher M(S) value, which varies with the strength of the metal-sulfur bond. Ferromagnetism is also found in Pt and Ag nanoparticles prepared as sols, and the M(S) values vary as Pt > Au > Ag. A careful study of the temperature variation of the magnetization of Au nanoparticles, along with certain other observations, suggests that small bare nanoparticles of noble metals could indeed possess ferromagnetism, albeit weak, which is accentuated in the presence of capping agents, specially alkane thiols which form strong metal-sulfur bonds.
Resumo:
Rotational spectra of C(6)H(5)CCH center dot center dot center dot H(2)S, C(6)H(5)CCH center dot center dot center dot H(2)(34)S, C(6)H(5)CCH center dot center dot center dot HDS, C(6)H(5)CCH center dot center dot center dot D(2)S and C(6) H(5)CCD center dot center dot center dot H(2)S complexes have been observed using a pulsed nozzle Fourier transform microwave spectrometer. The observed spectrum is consistent with a structure in which hydrogen sulfide is located over the phenyl ring pi cloud and the distance between the centers of masses of the two monomers is 3.74 +/- 0.01 angstrom. In the complex, the H(2)S unit is shifted from the phenyl ring center towards the acetylene group. The vibrationally averaged structure has an effective Cs symmetry. Ab initio calculations were performed at MP2/aug-cc-pVDZ level of theory to locate the possible geometries of the complex. The calculations reveal the experimentally observed structure to be more stable than a coplanar arrangement of the monomers, which was observed for the C(6)H(5)CCH center dot center dot center dot H(2)O complex. Atoms in molecule theoretical analysis shows the presence of S-H center dot center dot center dot pi hydrogen bond. For the parent isotopologue, each transition frequency was found to split into two resulting from an interchange of the equivalent hydrogens of H(2)S unit in the complex. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A series of novel hexasubstituted cyclophosphazene hydrazones [N(3)P(3)(-OC(6)H(4)-p-CH=N-NH-C(O)-C(6)H(4)-p-X)(6)] (X = H, Br, Cl, F, OH, OCH(3), CH(3), NO(2), NH(2)) were prepared by a sixfold condensation reaction of [N(3)P(3)(-OC(6)H(4)-p-CHO)(6)] with para-substituted benzoic hydrazides [NH(2)-NH-C(O)-C(6)H(4)-p-X] with excellent yields (91-98%). The structures of the compounds were confirmed by elemental analysis, FT-IR, (1)H, (13)C, (31)P, 2D-HSQC NMR and mass spectrometry (MALDI-TOF). All the synthesized cyclophosphazene hydrazones exhibit high thermal stability. The crystal structure of a homogeneously substituted hexakis(4-formylphenoxy)-cyclotriphosphazene was determined by X-ray diffraction analysis. The compound crystallizes in the monoclinic system, space group P2(1)/n with a = 16.558(3) angstrom, b = 10.250(2) angstrom, c = 23.429(5) angstrom, alpha = gamma = 90.00 degrees, beta = 90.461(4)degrees, V = 3976.5(14) angstrom(3) and Z = 4. The R value is 0.0823 for 4290 observed reflections. The conformations of the 4-formylphenoxy-groups are different at the three phosphorus atoms. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The synthesis, characterization, and reactivity of a chromium(0) complex bearing an amine-borane moiety (eta(6)-C(6)H(5)CH(2)NMe(2)center dot BH(3))Cr(CO)(3) (2) is reported. Photolysis of complex 2 results in the elimination of a CO ligand followed by the formation of an intramolecular sigma-borane complex (eta(1)-(eta(6)- C(6)H(5)CH(2)NMe(2)center dot BH(2)-H))Cr(CO)(2) (3). This species was characterized in solution by NMR spectroscopy. Reaction of complex 2 with photochemically generated (OC)(5)Cr(THF) affords a novel homobimetallic sigma-borane complex (OC)(3)Cr(eta(6)-C(6)H(5)CH(2)NMe(2)center dot BH(2)-H-Cr(CO)(5)) (4), wherein one of the BH moieties is bound to the chromium center in an eta(1)-fashion. The sigma-borane complex 4 was isolated in moderate to good yield (72%). The BH(3) fragment in the complexes 3 and 4 are highly dynamic involving exchange of the BH hydrogen bound to the metal with the terminal BH hydrogen atoms. The dynamics has been studied using variable-temperature NMR spectroscopy. Complexes 2 and 4 have been characterized by X-ray crystallography.
Resumo:
In this study, bulk and multifoil diffusion couple experiments were conducted to examine the interdiffusion process in Ni-Pt and Co-Pt binary alloy systems. Inter-, intrinsic-, and tracer-diffusion coefficients at different temperatures, and as a function of the composition, were estimated by using the experimental data. Results show that in both the alloy systems, Pt is the slower diffusing species, and hence the interdiffusion process is controlled by either Ni or Co. The thermodynamic driving force makes the intrinsic diffusion coefficients of Co and Ni higher in the range of 30-70 at.%. The low activation energy for Co and Ni impurity diffusion in Pt compared with Pt in Ni and Co indicates that the size of the atoms plays an important role. The vacancy wind effects on the diffusion process are examined in detail, and it was demonstrated that its contribution falls within the experimental scatter and hence can be neglected.
Resumo:
The reaction of [Cp*TaCl(4)], 1 (Cp* = eta(5)-C(5)Me(5)), with [LiBH(4)center dot THF] at -78 degrees C, followed by thermolysis in the presence of excess [BH(3)center dot THF], results in the formation of the oxatantalaborane cluster [(Cp*Ta)(2)B(4)H(10)O], 2 in moderate yield. Compound 2 is a notable example of an oxatantalaborane cluster where oxygen is contiguously bound to both the metal and boron. Upon availability of 2, a room temperature reaction was performed with [Fe(2)(CO)(9)], which led to the isolation of [(Cp*Ta)(2)B(2)H(4)O{H(2)Fe(2)(CO)(6)BH} ] 3. Compound 3 is an unusual heterometallic boride cluster in which the [Ta(2)Fe(2)] atoms define a butterfly framework with one boron atom lying in a semi-interstitial position. Likewise, the diselenamolybdaborane, [(Cp*Mo)(2)B(4)H(4)Se(2)], 4 was treated with an excess of [Fe(2)(CO)(9)] to afford the heterometallic boride cluster [(Cp*MoSe)(2)Fe(6)(CO)(13)B(2)(BH)(2)], 5. The cluster core of 5 consists of a cubane [Mo(2)Se(2)Fe(2)B(2)] and a tricapped trigonal prism [Fe(6)B(3)] fused together with four atoms held in common between the two subclusters. In the tricapped trigonal prism subunit, one of the boron atoms is completely encapsulated and bonded to six iron and two boron atoms. Compounds 2, 3, and 5 have been characterized by mass spectrometry, IR, (1)H, (11)B, (13)C NMR spectroscopy, and the geometric structures were unequivocally established by crystallographic analysis. The density functional theory calculations yielded geometries that are in close agreement with the observed structures. Furthermore, the calculated (11)B NMR chemical shifts also support the structural characterization of the compounds. Natural bond order analysis and Wiberg bond indices are used to gain insight into the bonding patterns of the observed geometries of 2, 3, and 5.
Resumo:
Insertion of just a few impurity atoms in a host semiconductor nanocrystal can drastically alter its phase, shape, and physical properties. Such doped nanomaterials now constitute an important class of optical materials that can provide efficient, stable, and tunable dopant emission in visible and NIR spectral windows. Selecting proper dopants and inserting them in appropriate hosts can generate many new series of such doped nanocrystals with several unique and attractive properties in order to meet current challenges in the versatile field of luminescent materials. However, the synthesis of such doped nanomaterials with a specific dopant in a predetermined host at a desired site leading to targeted optical properties requires fundamental understanding of both the doping process as well as the resulting photophysical properties. Summarizing up to date literature reports, in this Perspective we discuss important advances in synthesis methods and in-depth understanding of the optical properties, with an emphasis on the most widely investigated Mn-doped semiconductor nanocrystals.
Resumo:
The activity coefficients of oxygen in liquid lead-tin alloys have been measured between 550 and 1100°C by use of solid oxide galvanic cells Pt, Ni-NiO I Zr02 Solid electrolyte I 0 (Pb + Sn), Cermet, Pt Pt, Fe-FeO I Zr02 Solid electrolyte I O(Pb + Sn), Cermet, Pt Alcock and Richardson's quasi-chemical equation, with the coordination number of atoms set to 2, is found to predict successfully the activity coefficients of oxygen in these alloys.The relative partial molar enthalpy and entropy of oxygen ?t 1 atom per cent in the alloys have been calculated from ttva variation of the activity coefficient with temperature. The addition of tin to an unsaturated solution of oxygen in lead is shown to decrease significantly both the partial molar enthalpy and entropy of oxygen. As the measurements were restricted to a narrow range between 750-1100'C in lead-rich alloys, however, the pronounced variation of the partial molar enthalpy of oxygen with temperature at constant alloy composition predicted by the quasi-chemical model could not be verified.
Resumo:
The reversible e.m.f. of galvanic cells: stainlesssteel,Ir,Pb+PbO|CaO+ZrO2|Ag+Pb+PbO,Ir,stainlesssteel,I and Pt,Ni+NiO|CaO+ZrO2|O(Pb+Ag),Cermet,Pt,II incorporating solid oxide electrolytes were measured as a function of alloy composition. In lead-rich alloys, the temperature dependence of the e.m.f. of cell I was also investigated. Since the solubility of oxygen in the alloy is small, the relative partial molar properties of lead in the binary Ag + Pb system can be calculated from the e.m.f. of this cell. The Gibbs free energies obtained in this study are combined with selected calorimetric data to provide a complete thermodynamic discription of liquid Ag + Pb Alloys. The activity coefficient of oxygen in the whole range of Ag + Pb alloys at 1273 K have been obtained from the e.m.f. of cell II; and these are found to deviate positively from Alcock and Richardson's quasichemical equation when the average co-ordination number of all the atoms is assigned a value of 2.
Resumo:
An equation has been derived for predicting the activity coefficient of oxygen or sulphur in dilute solution in binary alloys, based on the quasichemical approach, where the metal atoms and the oxygen atoms are assigned different bond numbers. This equation is an advance on Alcock and Richardson's earlier treatment where all the three types of atoms were assigned the same coordination number. However, the activity coefficients predicted by this new equation appear to be very similar to those obtained through Alcock and Richardson's equation for a number of alloy systems, when the coordination number of oxygen in the new model is the same as the average coordination number used in the earlier equation. A second equation based on the formation of “molecular species” of the type XnO and YnO in solution is also derived, where X and Y atoms attached to oxygen are assumed not to make any other bonds. This equation does not fit experimental data in all the systems considered for a fixed value of n. Howover, if the strong oxygen-metal bonds are assumed to distort the electronic configuation around the metal atoms bonded to oxygen and thus reduce the strength of the bonds formed by these atoms with neighbouring metal atoms by approximately a factor of two, the resulting equation is found to predict the activity coefficients of oxygen that are in good agreement with experimental data in a number of binary alloys.
Resumo:
Equations are developed for predicting the activity coefficients of oxygen dissolved in ternary liquid alloys. These are extensions of earlier treatments, and are based on a model in which each oxygen atom is assumed to make four bonds with neighboring metal atoms. It is also postulated that the strong oxygen-metal bonds distort the electronic configuration around the metal atoms bonded to oxygen, and that the quantitative reduction of the strength of bonds made by these atoms with all of the adjacent metal atoms is equivalent to a factor of approximately two. The predictions of the quasichemical equation which is derived agree satisfactorily with the partial molar free energies of oxygen in Ag-Cu-Sn solutions at 1200°C reported in literature. An extension of this treatment to multicomponent solutions is also indicated.