397 resultados para ray trajectory equation
Resumo:
A sufficiently long lived warm dark matter could be a source of X-rays observed by satellite based X-ray telescopes. We consider axinos and gravitinos with masses between 1 keV and 100 keV in supersymmetric models with sin all R-parity violation. We show that axino dark matter receives significant constraints from X-ray observations of Chandra and SPI, especially for the lower end of the allowed range of the axino decay constant f(a), while the gravitino dark matter remains unconstrained.
Resumo:
The effect of confinement on the structure of hemoglobin (Hb) within polymer capsules was investigated here. Hemoglobin transformed from an aggregated state in solution to a nonaggregated state when confined inside the polymer capsules. This was directly confirmed using synchrotron small-angle X-ray scattering (SAXS) studies. The radius of gyration (R-g) and polydispersity (p) of the proteins in the confined state were smaller compared to those in solution. In fact, the R-g value is very similar to theoretical values obtained using protein structures generated from the Protein Databank. In the temperature range (25-85 degrees C, Tm 59 degrees C), the R-g values for the confined Hb remained constant. This observation is in contrary to the increasing R-g values obtained for the bare Hb in solution. This suggested higher thermal stability of Hb when confined inside the polymer capsule than when in solution. Changes in protein configuration were also reflected in the protein function. Confinement resulted in a beneficial enhancement of the electroactivity of Hb. While Hb in solution showed dominance of the cathodic process (Fe3+ -> Fe2+), efficient reversible Fe3+/Fe2+ redox response is observed in the case of the confined Hb. This has important protein functional implications. Confinement allows the electroactive heme to take up positions favorable for various biochemical activities such as sensing of analytes of various sizes from small to macromolecules and controlled delivery of drugs.
Resumo:
The effectiveness of different routes of equal channel angular pressing (A, B-c, and C) is studied for commercially pure copper. The stored energy and the activation energy of recrystallization for the deformed samples were quantified using differential scanning calorimetry and X-ray diffraction line profile analysis. Results of the study revealed that the dislocation density and the stored energy are higher in the case of route B-c deformed sample. The activation energy for recrystallization is lower for route B-c. (C) 2012 International Centre for Diffraction Data doi:10.1017/S0885715612000310]
Resumo:
MutT1 (MSMEG_2390) from Mycobacterium smegmatis has been crystallized and the crystals have been characterized using X-ray diffraction. The crystals belonged to space group P2(1)2(1)2(1). The Matthews coefficient suggested the possibility of one protein molecule in the asymmetric unit of the orthorhombic unit cell. Solution of the structure using the known three-dimensional structure of a bacterial MutT1 is anticipated.
Resumo:
The nucleation and growth of vanadium oxide nanotubes (VOx-NT) have been followed by a combination of numerous ex situ techniques. long the hydrothermal process. Intermediate solid phases extracted at different reaction times have been characterized by powder X-ray diffraction, scanning and transmission electron microscopy, electron spin resonance, and V-K edge :X-ray absorption near-edge structure spectroscopy. The supernatant vanadate solutions extracted during the hydrothermal treatment have been studied by liquid V-51 NMR and flame. spectroscopy. For short durations of the hydrothermal synthesis, the initial V2O5-surfactant intercalate. is progressively transformed into VOx-NT whose crystallization starts to be detected after a hydrothermal treatment of 24 h. Upon heating from 24 h to 7 days, VOx-NT are obtained in larger amount and with an improved crystallinity. The detection of soluble amines and cyclic metavanadate V4O12](4-) in the supernatant solution along the hydrothermal process suggests that VOx-NT result from a dissolution precipitation mechanism. Metavanadate species V4O12](4-) could behave as molecular precursors in the polymerization reactions leading to VOx-NT.
Resumo:
The heat of adsorption of methane, ethane, carbon dioxide, R-507a and R-134a on several specimens of microporous activated carbons is derived from experimental adsorption data fitted to the Dubinin-Astakhov equation. These adsorption results are compared with literature data obtained from calorimetric measurements and from the pressure-temperature relation during isosteric heating/cooling. Because the adsorbed phase volume plays an important role, its dependence on temperature and pressure needs to be correctly assessed. In addition, for super-critical gas adsorption, the evaluation of the pseudo-saturation pressure also needs a judicious treatment. Based on the evaluation of carbon dioxide adsorption, it can be seen that sub-critical and super-critical adsorption show different temperature dependences of the isosteric heat of adsorption. The temperature and loading dependence of this property needs to be taken into account while designing practical systems. Some practical implications of these findings are enumerated.
Resumo:
In this article, we investigate the performance of a volume integral equation code on BlueGene/L system. Volume integral equation (VIE) is solved for homogeneous and inhomogeneous dielectric objects for radar cross section (RCS) calculation in a highly parallel environment. Pulse basis functions and point matching technique is used to convert the volume integral equation into a set of simultaneous linear equations and is solved using parallel numerical library ScaLAPACK on IBM's distributed-memory supercomputer BlueGene/L by different number of processors to compare the speed-up and test the scalability of the code.
Resumo:
Nucleotide biosynthesis plays a key role in cell survival and cell proliferation. Thymidylate kinase is an enzyme that catalyses the conversion of dTMP to dTDP using ATP-Mg2+ as a phosphoryl-donor group. This enzyme is present at the junction of the de novo and salvage pathways; thus, any inhibitor designed against it will result in cell death. This highlights the importance of this enzyme as a drug target. Thymidylate kinase from the extremely thermophilic organism Thermus thermophilus HB8 has been expressed, purified and crystallized using the microbatch method. The crystals diffracted to a resolution of 1.83 angstrom and belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 39.50, b = 80.29, c = 122.55 angstrom. Preliminary studies revealed the presence of a dimer in the asymmetric unit with a Matthews coefficient (V-M) of 2.18 angstrom(3) Da(-1).
Resumo:
An energy-spectrum bottleneck, a bump in the turbulence spectrum between the inertial and dissipation ranges, is shown to occur in the nonturbulent, one-dimensional, hyperviscous Burgers equation and found to be the Fourier-space signature of oscillations in the real-space velocity, which are explained by boundary-layer-expansion techniques. Pseudospectral simulations are used to show that such oscillations occur in velocity correlation functions in one- and three-dimensional hyperviscous hydrodynamical equations that display genuine turbulence. DOI: 10.1103/PhysRevLett.110.064501
Resumo:
Parabolized stability equation (PSE) models are being deve loped to predict the evolu-tion of low-frequency, large-scale wavepacket structures and their radiated sound in high-speed turbulent round jets. Linear PSE wavepacket models were previously shown to be in reasonably good agreement with the amplitude envelope and phase measured using a microphone array placed just outside the jet shear layer. 1,2 Here we show they also in very good agreement with hot-wire measurements at the jet center line in the potential core,for a different set of experiments. 3 When used as a model source for acoustic analogy, the predicted far field noise radiation is in reasonably good agreement with microphone measurements for aft angles where contributions from large -scale structures dominate the acoustic field. Nonlinear PSE is then employed in order to determine the relative impor-tance of the mode interactions on the wavepackets. A series of nonlinear computations with randomized initial conditions are use in order to obtain bounds for the evolution of the modes in the natural turbulent jet flow. It was found that n onlinearity has a very limited impact on the evolution of the wavepackets for St≥0. 3. Finally, the nonlinear mechanism for the generation of a low-frequency mode as the difference-frequency mode 4,5 of two forced frequencies is investigated in the scope of the high Reynolds number jets considered in this paper.
Resumo:
A fully discrete C-0 interior penalty finite element method is proposed and analyzed for the Extended Fisher-Kolmogorov (EFK) equation u(t) + gamma Delta(2)u - Delta u + u(3) - u = 0 with appropriate initial and boundary conditions, where gamma is a positive constant. We derive a regularity estimate for the solution u of the EFK equation that is explicit in gamma and as a consequence we derive a priori error estimates that are robust in gamma. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We review the existing literature on the application of X-ray photoelectron spectroscopy in the study of nanocrystals. The unique ability of this technique to provide quantitative and reliable descriptions of highly complex internal structures of a variety of nanocrystals has been discussed in detail. We show that an accurate description of the nanocrystal internal structure is crucial and a prerequisite to understand many different properties, particularly optical properties, of such nanocrystal systems. We also discuss limitations and future outlook of this technique.
Resumo:
The classical Chapman-Enskog expansion is performed for the recently proposed finite-volume formulation of lattice Boltzmann equation (LBE) method D.V. Patil, K.N. Lakshmisha, Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh, J. Comput. Phys. 228 (2009) 5262-5279]. First, a modified partial differential equation is derived from a numerical approximation of the discrete Boltzmann equation. Then, the multi-scale, small parameter expansion is followed to recover the continuity and the Navier-Stokes (NS) equations with additional error terms. The expression for apparent value of the kinematic viscosity is derived for finite-volume formulation under certain assumptions. The attenuation of a shear wave, Taylor-Green vortex flow and driven channel flow are studied to analyze the apparent viscosity relation.
Resumo:
Crystal structure analysis of a galactose-specific lectin from a leguminous food crop Dolichos lablab (Indian lablab beans) has been carried out to obtain insights into its quaternary association and lectin-carbohydrate interactions. The analysis led to the identification of adenine binding sites at the dimeric interfaces of the heterotetrameric lectin. Structural details of similar adenine binding were reported in only one legume lectin, Dolichos biflorus, before this study. Here, we present the structure of the galactose-binding D. lablab lectin at different pH values in the native form and in complex with galactose and adenine. This first structure report on this lectin also provides a high resolution atomic view of legume lectin-adenine interactions. The tetramer has two canonical and two DB58-like interfaces. The binding of adenine, a non-carbohydrate ligand, is found to occur at four hydrophobic sites at the core of the tetramer at the DB58-like dimeric interfaces and does not interfere with the carbohydrate-binding site. To support the crystallographic observations, the adenine binding was further quantified by carrying out isothermal calorimetric titration. By this method, we not only estimated the affinity of the lectin to adenine but also showed that adenine binds with negative cooperativity in solution.
Resumo:
In a cyber physical system like vehicles number of signals to be communicated in a network system has an increasing trend. More and more mechanical and hydraulic parts are replaced by electronic control units and infotainment and multimedia applications has increased in vehicles. Safety critical hard real time messages and aperiodic messages communicated between electronic control units have been increased in recent times. Flexray is a high bandwidth protocol consisting of static segment for supporting hard real time messages and a dynamic segment for transmitting soft and non real time messages. In this paper, a method to obtain the stability region for the random arrival of messages in each electronic control units which is scheduled in the dynamic segment of Flexray protocol is presented. Number of mini slots available in the dynamic segment of Flexray restricts the arrival rate of tasks to the micro controllers or the number of micro controllers connected to the Flexray bus. Stability region of mathematical model of the system is compared with the Flexray protocol simulation results.