368 resultados para kissing-loop interaction
Resumo:
Single-stranded DNA binding proteins (SSBs) are vital in all organisms. SSBs of Escherichia coli (EcoSSB) and Mycobacterium tuberculosis (MtuSSB) are homotetrameric. The N-terminal domains (NTD) of these SSBs (responsible for their tetramerization and DNA binding) are structurally well defined. However, their C-terminal domains (CTD) possess undefined structures. EcoSSB NTD consists of beta 1-beta 1'-beta 2-beta 3-alpha-beta 4-beta 45(1)-beta 45(2)-beta 5 secondary structure elements. MtuSSB NTD includes an additional beta-strand (beta 6) forming a novel hook-like structure. Recently, we observed that MtuSSB complemented an E. coli Delta ssb strain. However, a chimeric SSB (m beta 4-beta 5), wherein only the terminal part of NTD (beta 4-beta 5 region possessing L-45 loop) of EcoSSB was substituted with that from MtuSSB, failed to function in E. coli in spite of its normal DNA binding and oligomerization properties. Here, we designed new chimeras by transplanting selected regions of MtuSSB into EcoSSB to understand the functional significance of the various secondary structure elements within SSB. All chimeric SSBs formed homotetramers and showed normal DNA binding. The m beta 4-beta 6 construct obtained by substitution of the region downstream of beta 5 in m beta 4-beta 5 SSB with the corresponding region (beta 6) of MtuSSB complemented the E. coli strain indicating a functional interaction between the L-45 loop and the beta 6 strand of MtuSSB.
Resumo:
Protection-based ant-plant mutualisms may vary in strength due to differences in ant rewards, abundance of protective ants and herbivory pressure. We investigated geographical and temporal variation in host plant traits and herbivory pressure at five sites spanning the distribution range of the myrmecophyte Humboldtia brunonis (Fabaceae) in the Indian Western Ghats. Southern siteshad, onaverage, 2.4 times greater abundance of domatia-bearing individuals, 1.6 times greater extrafloral nectary numbers per leaf, 1.2 times larger extrafloral nectary sizes, 2.2 times greater extrafloral nectar (EFN) volumes and a two-fold increase in total amino acid and total sugar concentrations in EFN compared with northern sites. Astrong protection-based mutualismwith ants occurred at only one southern site where herbivory was highest, suggesting that investments in attracting ants correlate with anti-herbivore benefits gained from the presence of protective ants. Our results confirm a temporally stable north-south gradient in myrmecophytic traits in this ant-plant as several of these traits were re-sampled after a 5-y interval. However, the chemical composition of EFN varied at both spatial and short-term temporal scales suggesting that only repeated measurements of rewards such as EFN can reveal the real spectrum of trait variation in an ant-plant mutualistic system.
Resumo:
This paper reports instability and oscillations in the stator current under light-load conditions in a practical 100-kW induction motor drive. Dead-time is shown to be a cause for such oscillations. This paper shows experimentally that these oscillations could be mitigated significantly with the help of a simple dead-time compensation scheme.
Resumo:
Mitochondrial Hsp70 (mtHsp70) is essential for a vast repertoire of functions, including protein import, and requires effective interdomain communication for efficient partner-protein interactions. However, the in vivo functional significance of allosteric regulation in eukaryotes is poorly defined. Using integrated biochemical and yeast genetic approaches, we provide compelling evidence that a conserved substrate-binding domain (SBD) loop, L-4,L-5, plays a critical role in allosteric communication governing mtHsp70 chaperone functions across species. In yeast, a temperature-sensitive L-4,L-5 mutation (E467A) disrupts bidirectional domain communication, leading to compromised protein import and mitochondrial function. Loop L-4,L-5 functions synergistically with the linker in modulating the allosteric interface and conformational transitions between SBD and the nucleotide-binding domain (NBD), thus regulating interdomain communication. Second-site intragenic suppressors of E467A isolated within the SBD suppress domain communication defects by conformationally altering the allosteric interface, thereby restoring import and growth phenotypes. Strikingly, the suppressor mutations highlight that restoration of communication from NBD to SBD alone is the minimum essential requirement for effective in vivo function when primed at higher basal ATPase activity, mimicking the J-protein-bound state. Together these findings provide the first mechanistic insights into critical regions within the SBD of mtHsp70s regulating interdomain communication, thus highlighting its importance in protein translocation and mitochondrial biogenesis.
Resumo:
1. How a symbiosis originates and is maintained are important evolutionary questions. Symbioses in myrmecophytes (plants providing nesting for ants) are believed to be maintained by protection and nutrients provided by specialist plant-ants in exchange for nesting spaces (called domatia) and nourishment offered by ant-plants. However, besides the benefits accrued from housing protective ants, the mechanisms contributing to the fitness advantages of bearing domatia have rarely been examined, especially because the domatia trait is usually constitutively expressed, and many myrmecophytes have obligate mutualisms with single ant species resulting in invariant conditions. 2. In the unspecialized ant-plant Humboldtia brunonis (Fabaceae) that offers extrafloral nectar to ants, only some plants produce domatia in the form of hollow internodes. These domatia have a self-opening slit making them more prone to interlopers and are occupied mostly by non-protective ants and other invertebrates, especially arboreal earthworms. The protection mutualism with ants is restricted in geographical extent, occurring only at a few sites in the southernmost part of this plant's range in the Western Ghats of India. 3. We examined nutrient flux from domatia residents to the plant using stable isotopes. We found that between 9% (earthworms) and 17% (protective or non-protective ants) of nitrogen of plant tissues nearest the domatium came from domatia inhabitants. Therefore, interlopers such as earthworms and non-protective ants contributed positively to the nitrogen budget of localized plant modules of this understorey tree. N-15-enriched feeding experiments with protective ants demonstrated that nutrients flowed from domatia inhabitants to nearby plant modules. Fruit set did not differ between paired hand-pollinated inflorescences on domatia and non-domatia bearing branches. This was possibly due to the nutrient flux from domatia to adjacent branches without domatia within localized modules. 4. This study has demonstrated the nutritive role of non-protective ants and non-ant invertebrates, hitherto referred to as interlopers, in an unspecialized myrmecophyte. Our study suggests that even before the establishment of a specialized ant-plant protection mutualism, nutritional benefits conferred by domatia inhabitants can explain the fitness benefits of bearing domatia, and thus the maintenance of a trait that facilitates the establishment of a specialized ant-plant symbiosis.
Resumo:
Polyhedral techniques for program transformation are now used in several proprietary and open source compilers. However, most of the research on polyhedral compilation has focused on imperative languages such as C, where the computation is specified in terms of statements with zero or more nested loops and other control structures around them. Graphical dataflow languages, where there is no notion of statements or a schedule specifying their relative execution order, have so far not been studied using a powerful transformation or optimization approach. The execution semantics and referential transparency of dataflow languages impose a different set of challenges. In this paper, we attempt to bridge this gap by presenting techniques that can be used to extract polyhedral representation from dataflow programs and to synthesize them from their equivalent polyhedral representation. We then describe PolyGLoT, a framework for automatic transformation of dataflow programs which we built using our techniques and other popular research tools such as Clan and Pluto. For the purpose of experimental evaluation, we used our tools to compile LabVIEW, one of the most widely used dataflow programming languages. Results show that dataflow programs transformed using our framework are able to outperform those compiled otherwise by up to a factor of seventeen, with a mean speed-up of 2.30x while running on an 8-core Intel system.
Resumo:
Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the `feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony.
Resumo:
We have performed fully atomistic classical molecular dynamics simulations to calculate the effective interaction between two polyamidoamine dendrimers. Using the umbrella sampling technique, we have obtained the potential of mean force (PMF) between the dendrimers and investigated the effects of protonation level and dendrimer size on the PMF. Our results show that the interaction between the dendrimers can be tuned from purely repulsive to partly attractive by changing the protonation level. The PMF profiles are well-fitted by the sum of an exponential and a Gaussian function with the weight of the exponential function dominating over that of the Gaussian function. This observation is in disagreement with the results obtained in previous analytic C. Likos, M. Schmidt, H. Lowen, M. Ballauff, D. Potschke, and P. Lindner, Macromolecules 34, 2914 (2001)] and coarse-grained simulation I. Gotze, H. Harreis, and C. Likos, J. Chem. Phys. 120, 7761 (2004)] studies which predicted the effective interaction to be Gaussian. (C) 2014 AIP Publishing LLC.
Resumo:
Here, we show the binding results of a leguminosae lectin, winged bean basic agglutinin (WBA I) to N-trifluoroacetylgalactosamine (NTFAGalN), methyl-alpha-N-trifluoroacetylgalactosamine (Me alpha NTFAGalN) and methyl-beta-tifluoroacetylgalactosamine (Me beta NTFAGalN) using (19) F NMR spectroscopy. No chemical shift difference between the free and bound states for NTFAGalN and Me beta NTFAGalN, and 0.01-ppm chemical shift change for Me alpha NTFAGalN, demonstrate that the Me alpha NTFAGalN has a sufficiently long residence time on the protein binding site as compared to Me beta NTFAGalN and the free anomers of NTFAGalN. The sugar anomers were found in slow exchange with the binding site of agglutinin. Consequently, we obtained their binding parameters to the protein using line shape analyses. Aforementioned analyses of the activation parameters for the interactions of these saccharides indicate that the binding of alpha and beta anomers of NTFAGalN and Me alpha NTFAGalN is controlled enthalpically, while that of Me beta NTFAGalN is controlled entropically. This asserts the sterically constrained nature of the interaction of the Me beta NTFAGalN with WBA I. These studies thus highlight a significant role of the conformation of the monosaccharide ligands for their recognition by WBA I.
Resumo:
Using a thermodynamically consistent non-local plasticity model, the mechanistic origin of enhancement in ductility and suppression of dominant shear banding in nanoglasses (NGs) is analysed. It is revealed that the interaction stress between flow defects plays a central role in promoting global plasticity of NGs. Specifically, we find that the intrinsic length associated with this stress provides a scaling for the shear band width and its coupling with grain size governs the level of enhancement in the deformation behaviour of NGs. The present work may provide useful insights in developing highly ductile NGs for practical engineering applications.
Resumo:
This paper demonstrates light-load instability in open-loop induction motor drives on account of inverter dead-time. The dynamic equations of an inverter fed induction motor, incorporating the effect of dead-time, are considered. A procedure to derive the small-signal model of the motor, including the effect of inverter dead-time, is presented. Further, stability analysis is carried out on a 100-kW, 415V, 3-phase induction motor considering no-load. For voltage to frequency (i.e. V/f) ratios between 0.5 and 1 pu, the analysis brings out regions of instability on the V-f plane, in the frequency range between 5Hz and 20Hz. Simulation and experimental results show sub-harmonic oscillations in the motor current in this region, confirming instability as predicted by the analysis.
Resumo:
Wavelength Division Multiplexing (WDM) techniques overfibrelinks helps to exploit the high bandwidth capacity of single mode fibres. A typical WDM link consisting of laser source, multiplexer/demultiplexer, amplifier and detectoris considered for obtaining the open loop gain model of the link. The methodology used here is to obtain individual component models using mathematical and different curve fitting techniques. These individual models are then combined to obtain the WDM link model. The objective is to deduce a single variable model for the WDM link in terms of input current to system. Thus it provides a black box solution for a link. The Root Mean Square Error (RMSE) associated with each of the approximated models is given for comparison. This will help the designer to select the suitable WDM link model during a complex link design.
Resumo:
Identification of viral encoded proteins that interact with RNA-dependent RNA polymerase (RdRp) is an important step towards unraveling the mechanism of replication. Sesbania mosaic virus (SeMV) RdRp was shown to interact strongly with p10 domain of polyprotein 2a and moderately with the protease domain. Mutational analysis suggested that the C-terminal disordered domain of RdRp is involved in the interaction with p10. Coexpression of full length RdRp and p10 resulted in formation of RdRp-p10 complex which showed significantly higher polymerase activity than RdRp alone. Interestingly, C Delta 43 RdRp also showed a similar increase in activity. Thus, p10 acts as a positive regulator of RdRp by interacting with the C-terminal disordered domain of RdRp. (C) 2014 The Authors. Published by Elsevier B.V.
Resumo:
One of the most important roles of proteins in cellular milieu is recognition of other biomolecules including other proteins. Protein protein complexes are involved in many essential cellular processes. Interfaces of protein protein complexes are traditionally known to be conserved in evolution and less flexible than other solvent interacting tertiary structural surface. But many examples are emerging where these features do not hold good. An understanding of inter-play between flexibility and sequence conservation is emerging, providing a fresh dimension to the paradigm of sequence structure function relationship. The functional manifestation of the inter-relation between sequence conservation and flexibility of interface is exemplified in this review using proteinase inhibitor protein complexes. (C) 2014 Elsevier Ltd. All rights reserved.