392 resultados para binding free enthalpy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

13 C resonances of carbonyl and methyl groups in amides are shifted down-field on interaction with alkali and alkaline earth metal salts. The magnitude of the shift depends on the ionic potential of the cation. Ions like Li+ bind to the amide carbonyl group both in neat amide solutions as well as in concentrated salt solutions in water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Langevin dynamics simulation studies have been employed to calculate the temperature dependent free energy surface and folding characteristics of a 500 monomer long linear alkane (polyethylene) chain with a realistic interaction potential. Both equilibrium and temperature quench simulation studies have been carried out. Using the shape anisotropy parameter (S) of the folded molecule as the order parameter, we find a weakly first order phase transition between the high-temperature molten globule and low-temperature rodlike crystalline states separated by a small barrier of the order of k(B)T. Near the melting temperature (580 K), we observe an intriguing intermittent fluctuation with pronounced ``1/f noise characteristics'' between these two states with large difference in shape and structure. We have also studied the possibilities of different pathways of folding to states much below the melting point. At 300 K starting from the all-trans linear configuration, the chain folds stepwise into a very regular fourfold crystallite with very high shape anisotropy. Whereas, when quenched from a high temperature (900 K) random coil regime, we identify a two step transition from the random coiled state to a molten globulelike state and, further, to a anisotropic rodlike state. The trajectory reveals an interesting coupling between the two order parameters, namely, radius of gyration (R-g) and the shape anisotropy parameter (S). The rodlike final state of the quench trajectory is characterized by lower shape anisotropy parameter and significantly larger number of gauche defects as compared to the final state obtained through equilibrium simulation starting from all-trans linear chain. The quench study shows indication of a nucleationlike pathway from the molten globule to the rodlike state involving an underlying rugged energy landscape. (C) 2010 American Institute of Physics. doi:10.1063/1.3509398]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A protein which binds specifically to [3H]-zeatin has been isolated from cucumber cotyledons by chromatographic techniques. Its binding to [3H]-zeatin was inhibited remarkably by the addition of non-radioactive cytokinins and the order of inhibition was zeatin > -zeatin riboside > N6-(Delta2-isopentenyl)adenine > N6-(Delta2-isopentenyl)adenosine > N6-benzyl-adenosine > kinetin riboside. This protein behaved as a soluble protein with an apparent molecular size of 43,000 daltons on gel filtration through calibrated Sephadex G-100 column. The dissociation constant, Kd, of the protein-zeatin complex was about 4 × 10–7 M.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray analysis of the ternary complex [Cu(5′-UMP)(im)2(H2O)]·4H2O, where 5′-UMP uridine-5′-monophosphate and IM = imidazole, reveals a novel metal binding mode of pyrimidine nucleotide through the ribose group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A symmetrizer of the matrix A is a symmetric solution X that satisfies the matrix equation XA=AprimeX. An exact matrix symmetrizer is computed by obtaining a general algorithm and superimposing a modified multiple modulus residue arithmetic on this algorithm. A procedure based on computing a symmetrizer to obtain a symmetric matrix, called here an equivalent symmetric matrix, whose eigenvalues are the same as those of a given real nonsymmetric matrix is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of NADH and accompanying reduction of oxygen to H2O2 stimulated by polyvanadate was markedly inhibited by SOD and cytochrome c. The presence of decavanadate, the polymeric form, is necessary for obtaining the microsomal enzyme-catalyzed activity. The accompanying activity of reduction of cytochrome c was found to be SOD-insensitive and therefore does not represent superoxide formation. The reduction of cytochrome c by vanadyl sulfate was also SOD-insensitive. In the presence of H2O2 all the forms of vanadate were able to oxidize reduced cytochrome c, which was sensitive to mannitol, tris and also catalase, indicating H202-dependent generation of hydroxyl radicals. Using ESR and spin trapping technique only hydroxyl radicals, but not superoxide anion radicals, were detected during polyvanadate-dependent NADH oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eighteen corpora striata from normal human foetal brains ranging in gestational age from 16 to 40 weeks and five from post natal brains ranging from 23 days to 42 years were analysed for the ontogeny of dopamine receptors using [3H]spiperone as the ligand and 10 mM dopamine hydrochloride was used in blanks. Spiperone binding sites were characterized in a 40-week-old foetal brain to be dopamine receptors by the following criteria: (1) It was localized in a crude mitochondrial pellet that included synaptosomes; (2) binding was saturable at 0.8 nM concentration; (3) dopaminergic antagonists spiperone, haloperidol, pimozide, trifluperazine and chlorpromazine competed for the binding with IC50 values in the range of 0.3–14 nM while agonists—apomorphine and dopamine gave IC50 values of 2.5 and 10 μM, respectively suggesting a D2 type receptor.Epinephrine and norepinephrine inhibited the binding much less efficiently while mianserin at 10 μM and serotonin at 1 mM concentration did not inhibit the binding. Bimolecular association and dissociation rate constants for the reversible binding were 5.7 × 108 M−1 min−1 and 5.0 × 10−2 min−1, respectively. Equilibrium dissociation constant was 87 pM and the KD obtained by saturation binding was 73 pM.During the foetal age 16 to 40 weeks, the receptor concentration remained in the range of 38–60 fmol/mg protein or 570–1080 fmol/g striatum but it increased two-fold postnatally reaching a maximum at 5 years Significantly, at lower foetal ages (16–24 weeks) the [3H]spiperone binding sites exhibited a heterogeneity with a high (KD, 13–85 pM) and a low (KD, 1.2–4.6 nM) affinity component, the former accounting for 13–24% of the total binding sites. This heterogeneity persisted even when sulpiride was used as a displacer. The number of high affinity sites increased from 16 weeks to 24 weeks and after 28 weeks of gestation, all the binding sites showed only a single high affinity.GTP decreased the agonist affinity as observed by dopamine competition of [3H]spiperone binding in 20-week-old foetal striata and at all subsequent ages. GTP increased IC50 values of dopamine 2 to 4.5 fold and Hill coefficients were also increased becoming closer to one suggesting that the dopamine receptor was susceptible to regulation from foetal life onwards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Native and derived ribosomal particles from the mycelial cells of Microsporum canis grown in the presence and absence of cycloheximide were compared by CsCl equilibrium density gradient centrifugation. Since the buoyant densities of ribonucleoprotein complexes are dependent on the protein-RNA ratio, they reflect the composition of these particles. The native monosomes from cells grown in the presence and absence of cycloheximide had a buoyant density of 1.585 g/cc. The native 60S subunits showed a density of 1.540 g/cc from cells grown in both presence and absence of cycloheximide, while the derived subunits showed a density of 1.610 g/cc. The derived 40S subunits had a density of 1.550 g/cc while the native 40S showed a major species of density 1.535 g/cc with three other minor species ranging in densities from 1.450-1.390 g/cc. The mycelia grown in the presence of cycloheximide showed an increased proportion of native 40S subunits in the density range of 1.450-1.390 g/cc, indicating that the drug enhances factor binding to native ribosomal subunits in M. canis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monoclonal antibodies were raised against purified chicken retinol-binding protein. These were characterised extensively with respect to their ability to recognize retinol-binding proteins from different species. The monoclonal antibodies exhibited differential recognition characteristics. Though the majority presented restricted reactivities, one out of the four monoclonal antibodies studied cross-reacted with retinol-binding proteins from all species tested so far.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-complementary DNA fragment CCGGCGCCGG crystallizes in the rhombohedral space group R3 with unit cell parameters a = 54.07 angstrom and c = 44.59 angstrom. The structure has been determined by X-ray diffraction methods at 2.2 angstrom resolution and refined to an R value of 16.7%. In the crystal, the decamer forms B-DNA double helices with characteristic groove dimensions: compared with B-DNA of random sequence, the minor groove is wide and deep and the major groove is rather shallow. Local base pair geometries and stacking patterns are within the range commonly observed in B-DNA crystal structures. The duplex bears no resemblance to A-form DNA as might have been expected for a sequence with only GC base pairs. The shallow major groove permits an unusual crystal packing pattern with several direct intermolecular hydrogen bonds between phosphate oxygens and cytosine amino groups. In addition, decameric duplexes form quasi-infinite double helices in the crystal by end-to-end stacking. The groove geometries and accessibilities of this molecule as observed in the crystal may be important for the mode of binding of both proteins and drug molecules to G/C stretches in DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monoclonal antibodies raised against human serum retinol-binding protein (hRBP) were used as probes for the study of the antigenic determinants of hRBP and those shared with the same protein from other species. The antibodies could be classified into four distinct groups and react with the homologous proteins from the rat as well as the rabbit sera. Three of these antibodies recognize sequential or continuous epitopes while the remaining antibody is directed against a discontinuous or conformational epitope. By chemical cleavage with cyanogen bromide, the domains recognized by the monoclonal antibodies could be delineated. By solid-phase synthetic approach, the core sequences recognized by two of these monoclonal antibodies were identified to amino acid sequences 45–51 and 128–131 of the primary amino acid sequence of hRBP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A first comprehensive investigation on the deflagration of ammonium perchlorate (AP) in the subcritical regime, below the low pressure deflagration limit (LPL, 2.03 MPa) christened as regime I$^{\prime}$, is discussed by using an elegant thermodynamic approach. In this regime, deflagration was effected by augmenting the initial temperature (T$_{0}$) of the AP strand and by adding fuels like aliphatic dicarboxylic acids or polymers like carboxy terminated polybutadiene (CTPB). From this thermodynamic model, considering the dependence of burning rate ($\dot{r}$) on pressure (P) and T$_{0}$, the true condensed (E$_{\text{s,c}}$) and gas phase (E$_{\text{s,g}}$) activation energies, just below and above the surface respectively, have been obtained and the data clearly distinguishes the deflagration mechanisms in regime I$^{\prime}$ and I (2.03-6.08 MPa). Substantial reduction in the E$_{\text{s,c}}$ of regime I$^{\prime}$, compared to that of regime I, is attributed to HClO$_{4}$ catalysed decomposition of AP. HClO$_{4}$ formation, which occurs only in regime I$^{\prime}$, promotes dent formation on the surface as revealed by the reflectance photomicrographs, in contrast to the smooth surface in regime I. The HClO$_{4}$ vapours, in regime I$^{\prime}$, also catalyse the gas phase reactions and thus bring down the E$_{\text{s,g}}$ too. The excess heat transferred on to the surface from the gas phase is used to melt AP and hence E$_{\text{s,c}}$, in regime I, corresponds to the melt AP decomposition. It is consistent with the similar variation observed for both the melt layer thickness and $\dot{r}$ as a function of P. Thermochemical calculations of the surface heat release support the thermodynamic model and reveal that the AP sublimation reduces the required critical exothermicity of 1108.8 kJ kg$^{-1}$ at the surface. It accounts for the AP not sustaining combustion in the subcritical regime I$^{\prime}$. Further support for the model comes from the temperature-time profiles of the combustion train of AP. The gas and condensed phase enthalpies, derived from the profile, give excellent agreement with those computed thermochemically. The $\sigma _{\text{p}}$ expressions derived from this model establish the mechanistic distinction of regime I$^{\prime}$ and I and thus lend support to the thermodynamic model. On comparing the deflagration of strand against powder AP, the proposed thermodynamic model correctly predicts that the total enthalpy of the condensed and gas phases remains unaltered. However, 16% of AP particles undergo buoyant lifting into the gas phase in the `free board region' (FBR) and this renders the demarcation of the true surface difficult. It is found that T$_{\text{s}}$ lies in the FBR and due to this, in regime I$^{\prime}$, the E$_{\text{s,c}}$ of powder AP matches with the E$_{\text{s,g}}$ of the pellet. The model was extended to AP/dicarboxylic acids and AP/CTPB mixture. The condensed ($\Delta $H$_{1}$) and gas phase ($\Delta $H$_{2}$) enthalpies were obtained from the temperature profile analyses which fit well with those computed thermochemically. The $\Delta $H$_{1}$ of the AP/succinic acid mixture was found just at the threshold of sustaining combustion. Indeed the lower homologue malonic acid, as predicted, does not sustain combustion. In vaporizable fuels like sebacic acid the E$_{\text{s,c}}$ in regime I$^{\prime}$, understandably, conforms to the AP decomposition. However, the E$_{\text{s,c}}$ in AP/CTPB system corresponds to the softening of the polymer which covers AP particles to promote extensive condensed phase reactions. The proposed thermodynamic model also satisfactorily explains certain unique features like intermittent, plateau and flameless combustion in AP/ polymeric fuel systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modes of binding of Gp(2',5')A, Gp(2',5')C, Gp(2',5')G and Gp(2',5')U to RNase T1 have been determined by computer modelling studies. All these dinucleoside phosphates assume extended conformations in the active site leading to better interactions with the enzyme. The 5'-terminal guanine of all these ligands is placed in the primary base binding site of the enzyme in an orientation similar to that of 2'-GMP in the RNase T1-2'-GMP complex. The 2'-terminal purines are placed close to the hydrophobic pocket formed by the residues Gly71, Ser72, Pro73 and Gly74 which occur in a loop region. However, the orientation of the 2'-terminal pyrimidines is different from that of 2'-terminal purines. This perhaps explains the higher binding affinity of the 2',5'-linked guanine dinucleoside phosphates with 2'-terminal purines than those with 2'-terminal pyrimidines. A comparison of the binding of the guanine dinucleoside phosphates with 2',5'- and 3',5'-linkages suggests significant differences in the ribose pucker and hydrogen bonding interactions between the catalytic residues and the bound nucleoside phosphate implying that 2',5'-linked dinucleoside phosphates may not be the ideal ligands to probe the role of the catalytic amino acid residues. A change in the amino acid sequence in the surface loop region formed by the residues Gly71 to Gly74 drastically affects the conformation of the base binding subsite, and this may account for the inactivity of the enzyme with altered sequence i.e., with Pro, Gly and Ser at positions 71 to 73 respectively. These results thus suggest that in addition to recognition and catalytic sites, interactions at the loop regions which constitute the subsite for base binding are also crucial in determining the substrate specificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermodynamics of monodisperse solutions of polymers in the neighborhood of the phase separation temperature is studied by means of Wilson’s recursion relation approach, starting from an effective ϕ4 Hamiltonian derived from a continuum model of a many‐chain system in poor solvents. Details of the chain statistics are contained in the coefficients of the field variables ϕ, so that the parameter space of the Hamiltonian includes the temperature, coupling constant, molecular weight, and excluded volume interaction. The recursion relations are solved under a series of simplifying assumptions, providing the scaling forms of the relevant parameters, which are then used to determine the scaling form of the free energy. The free energy, in turn, is used to calculate the other singular thermodynamic properties of the solution. These are characteristically power laws in the reduced temperature and molecular weight, with the temperature exponents being the same as those of the 3d Ising model. The molecular weight exponents are unique to polymer solutions, and the calculated values compare well with the available experimental data.