360 resultados para Significant mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural studies on the polymorphs of the organoselenium antioxidant ebselen and its derivative show the potential of organic selenium to form unusually short Se center dot center dot center dot O chalcogen bonds that lead to conserved supramolecular recognition units. Se center dot center dot center dot O interactions observed in these polymorphs are the shortest such chalcogen bonds known for organoselenium compounds. The FTIR spectral evolution characteristics of this interaction from solution state to solid crystalline state further validates the robustness of this class of supramolecular recognition units. The strength and electronic nature of the Se center dot center dot center dot O chalcogen bonds were explored using high-resolution X-ray charge density analysis and atons-in-molecules (AIM) theoretical analysis. A charge density study unravels the strong electrostatic nature of Se center dot center dot center dot O chalcogen bonding and soft-metal-like behavior of organoselenium. An analysis of the charge density around Se-N and Se-C covalent bonds in conjunction with the Se center dot center dot center dot O chalcogen bonding modes in ebselen and its analogues provides insights into the mechanism of drug action in this class of organoselenium antioxidants. The potential role of the intermolecular Se center dot center dot center dot O chalcogen bonding in forming the intermediate supramolecular assembly that leads to the bond cleavage mechanism has been proposed in terms of electron density topological parameters in a series of molecular complexes of ebselen with reactive oxygen species (ROS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homoserine dehydrogenase (HSD) is an oxidoreductase in the aspartic acid pathway. This enzyme coordinates a critical branch point of the metabolic pathway that leads to the synthesis of bacterial cell-wall components such as L-lysine and m-DAP in addition to other amino acids such as L-threonine, L-methionine and L-isoleucine. Here, a structural rationale for the hydride-transfer step in the reaction mechanism of HSD is reported. The structure of Staphylococcus aureus HSD was determined at different pH conditions to understand the basis for the enhanced enzymatic activity at basic pH. An analysis of the crystal structure revealed that Lys105, which is located at the interface of the catalytic and cofactor-binding sites, could mediate the hydride-transfer step of the reaction mechanism. The role of Lys105 was subsequently confirmed by mutational analysis. Put together, these studies reveal the role of conserved water molecules and a lysine residue in hydride transfer between the substrate and the cofactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional frequency analysis is widely used for estimating quantiles of hydrological extreme events at sparsely gauged/ungauged target sites in river basins. It involves identification of a region (group of watersheds) resembling watershed of the target site, and use of information pooled from the region to estimate quantile for the target site. In the analysis, watershed of the target site is assumed to completely resemble watersheds in the identified region in terms of mechanism underlying generation of extreme event. In reality, it is rare to find watersheds that completely resemble each other. Fuzzy clustering approach can account for partial resemblance of watersheds and yield region(s) for the target site. Formation of regions and quantile estimation requires discerning information from fuzzy-membership matrix obtained based on the approach. Practitioners often defuzzify the matrix to form disjoint clusters (regions) and use them as the basis for quantile estimation. The defuzzification approach (DFA) results in loss of information discerned on partial resemblance of watersheds. The lost information cannot be utilized in quantile estimation, owing to which the estimates could have significant error. To avert the loss of information, a threshold strategy (TS) was considered in some prior studies. In this study, it is analytically shown that the strategy results in under-prediction of quantiles. To address this, a mathematical approach is proposed in this study and its effectiveness in estimating flood quantiles relative to DFA and TS is demonstrated through Monte-Carlo simulation experiments and case study on Mid-Atlantic water resources region, USA. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The heterotrimeric M. tuberculosis RecBCD complex, or each of its individual subunits, remains uncharacterized. Results: MtRecD exists as a homodimer in solution, catalyzes ssDNA-dependent ATP hydrolysis, unwinding of DNA replication/recombination intermediates, and interacts with RecA. Conclusion: MtRecD possesses strong 5 3- and weak 3 5-helicase activities. Significance: These findings provide insights into the mechanism underlying DSB repair and homologous recombination in mycobacteria. The annotated whole-genome sequence of Mycobacterium tuberculosis revealed the presence of a putative recD gene; however, the biochemical characteristics of its encoded protein product (MtRecD) remain largely unknown. Here, we show that MtRecD exists in solution as a stable homodimer. Protein-DNA binding assays revealed that MtRecD binds efficiently to single-stranded DNA and linear duplexes containing 5 overhangs relative to the 3 overhangs but not to blunt-ended duplex. Furthermore, MtRecD bound more robustly to a variety of Y-shaped DNA structures having 18-nucleotide overhangs but not to a similar substrate containing 5-nucleotide overhangs. MtRecD formed more salt-tolerant complexes with Y-shaped structures compared with linear duplex having 3 overhangs. The intrinsic ATPase activity of MtRecD was stimulated by single-stranded DNA. Site-specific mutagenesis of Lys-179 in motif I abolished the ATPase activity of MtRecD. Interestingly, although MtRecD-catalyzed unwinding showed a markedly higher preference for duplex substrates with 5 overhangs, it could also catalyze significant unwinding of substrates containing 3 overhangs. These results support the notion that MtRecD is a bipolar helicase with strong 5 3 and weak 3 5 unwinding activities. The extent of unwinding of Y-shaped DNA structures was approximate to 3-fold lower compared with duplexes with 5 overhangs. Notably, direct interaction between MtRecD and its cognate RecA led to inhibition of DNA strand exchange promoted by RecA. Altogether, these studies provide the first detailed characterization of MtRecD and present important insights into the type of DNA structure the enzyme is likely to act upon during the processes of DNA repair or homologous recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of grain refinement in a AZ31 Mg alloy subjected to hot groove rolling is investigated up to large strain (epsilon(t) similar to 2.5). The alloy shows enhanced yield strength without compromising ductility. The change in strain path during rolling has resulted in significant weakening of basal texture. The microstructure analyses show that dynamic recrystallization (DRX) contributed significantly to grain refinement and hence to the observed mechanical properties. The combined effects of DRX and texture evolution on mechanical properties have been addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using first-principles calculations, we establish the existence of highly-stable polymorphs of hcp metals (Ti, Mg, Be, La and Y) with nanoscale structural periodicity. They arise from heterogeneous deformation of the hcp structure occurring in response to large shear stresses localized at the basal planes separated by a few nanometers. Through Landau theoretical analysis, we show that their stability derives from nonlinear coupling between strains at different length scales. Such multiscale hyperelasticity and long-period structures constitute a new mechanism of size-dependent plasticity and its enhancement in nanoscale hcp metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diaminopropionate ammonialyase (DAPAL), a fold-typeII pyridoxal 5-phosphate-dependent enzyme, catalyzes the ,-elimination of diaminopropionate (DAP) to pyruvate and ammonia. DAPAL was able to utilize both d- and l-DAP as substrates with almost equal efficiency. Mutational analysis of functionally important residues such as Thr385, Asp125 and Asp194 was carried out to understand the mechanism by which the isomers are hydrolyzed. Further, the putative residues involved in the formation of disulfide bond Cys271 and Cys299 were also mutated. T385S, T385D sDAPAL were as active with dl-DAP as substrate as sDAPAL, whereas the later exhibited a threefold increase in catalytic efficiency with d-Ser as substrate. Further analysis of these mutants suggested that DAPAL might follow an anti-E-2 mechanism of catalysis that does not involve the formation of a quinonoid intermediate. Of the two mutants of Asp125, D125E showed complete loss of activity with d-DAP as substrate, whereas the reaction with l-DAP was not affected significantly, demonstrating that Asp125 was essential for abstraction of protons from the d-isomer. By contrast, mutational analysis of Asp194 showed that the residue may not be directly involved in proton abstraction from l-DAP. sDAPAL does not form a disulfide bond in solution, although the position of Cys299 and Cys271 in the modeled structure of sDAPAL favored the formation of a disulfide bond. Further, unlike eDAPAL, sDAPAL could be activated by monovalent cations. Mutation of the cysteine residues showed that Cys271 may be involved in coordinating the monovalent cation, as observed in the case of other fold-typeII enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exascale systems of the future are predicted to have mean time between failures (MTBF) of less than one hour. At such low MTBFs, employing periodic checkpointing alone will result in low efficiency because of the high number of application failures resulting in large amount of lost work due to rollbacks. In such scenarios, it is highly necessary to have proactive fault tolerance mechanisms that can help avoid significant number of failures. In this work, we have developed a mechanism for proactive fault tolerance using partial replication of a set of application processes. Our fault tolerance framework adaptively changes the set of replicated processes periodically based on failure predictions to avoid failures. We have developed an MPI prototype implementation, PAREP-MPI that allows changing the replica set. We have shown that our strategy involving adaptive process replication significantly outperforms existing mechanisms providing up to 20 percent improvement in application efficiency even for exascale systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The annotated whole-genome sequence of Mycobacterium tuberculosis indicated that Rv1388 (Mtihf) likely encodes a putative 20 kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or organization of mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF-duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg170, Arg171, and Arg173, which might be involved in DNA binding, and a conserved proline (P150) in the tight turn. The phenotypic sensitivity of Escherichia coli Delta ihfA and Delta ihfB strains to UV and methylmethanesulfonate could be complemented with the wild-type Mtihf, but not its alleles bearing mutations in the DNA-binding residues. Protein DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, bind with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHF alpha beta. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes compaction of DNA into nucleoid-like or higher-order filamentous structures. We hence propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments conducted in channels/tubes with height/diameter less than 1 mm with soft walls made of polymer gels show that the transition Reynolds number could be significantly lower than the corresponding value of 1200 for a rigid channel or 2100 for a rigid tube. Experiments conducted with very viscous fluids show that there could be an instability even at zero Reynolds number provided the surface is sufficiently soft. Linear stability studies show that the transition Reynolds number is linearly proportional to the wall shear modulus in the low Reynolds number limit, and it increases as the 1/2 and 3/4 power of the shear modulus for the `inviscid' and `wall mode' instabilities at high Reynolds number. While the inviscid instability is similar to that in the flow in a rigid channel, the mechanisms of the viscous and wall mode instabilities are qualitatively different. These involve the transfer of energy from the mean flow to the fluctuations due to the shear work done at the interface. The experimental results for the viscous instability mechanism are in quantitative agreement with theoretical predictions. At high Reynolds number, the instability mechanism has characteristics similar to the wall mode instability. The experimental transition Reynolds number is smaller, by a factor of about 10, than the theoretical prediction for the parabolic flow through rigid tubes and channels. However, if the modification in the tube shape due to the pressure gradient, and the consequent modification in the velocity profile and pressure gradient, are incorporated, there is quantitative agreement between theoretical predictions and experimental results. The transition has important practical consequences, since there is a significant enhancement of mixing after transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, silver nanoparticles (AgNPs) have attracted significant attention owing to their unique physicochemical, optical, conductive and antimicrobial properties. One of the properties of AgNPs which is crucial for all applications is their stability. In the present study we unravel a mechanism through which silver nanoparticles are rendered ultrastable in an aqueous solution in complex with the protein ubiquitin (Ubq). This involves a dynamic and reversible association and dissociation of ubiquitin from the surface of AgNP. The exchange occurs at a rate much greater than 25 s(-1) implying a residence time of <40 ms for the protein. The AgNP-Ubq complex remains stable for months due to steric stabilization over a wide pH range compared to unconjugated AgNPs. NMR studies reveal that the protein molecules bind reversibly to AgNP with an approximate dissociation constant of 55 mu M and undergo fast exchange. At pH > 4 the positively charged surface of the protein comes in contact with the citrate capped AgNP surface. Further, NMR relaxation-based experiments suggest that in addition to the dynamic exchange, a conformational rearrangement of the protein takes place upon binding to AgNP. The ultrastability of the AgNP-Ubq complex was found to be useful for its anti-microbial activity, which allowed the recycling of this complex multiple times without the loss of stability. Altogether, the study provides new insights into the mechanism of protein-silver nanoparticle interactions and opens up new avenues for its application in a wide range of systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a strategy for controlling a group of agents to achieve positional consensus is presented. The problem is constrained by the requirement that every agent must be given the same control input through a broadcast communication mechanism. Although the control command is computed using state information in a global framework, the control input is implemented by the agents in a local coordinate frame. We propose a novel linear programming (LP) formulation that is computationally less intensive than earlier proposed methods. Moreover, a random perturbation input in the control command that helps the agents to come close to each other even for a large number of agents, which was not possible with an existing strategy in the literature, is introduced. The method is extended to achieve positional consensus at a prespecified location. The effectiveness of the approach is illustrated through simulation results. A comparison between the LP approach and the existing second-order cone programming-based approach is also presented. The algorithm was successfully implemented on a robotic platform with three robots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hippocampal pyramidal neurons exhibit gamma-phase preference in their spikes, selectively route inputs through gamma frequency multiplexing and are considered part of gamma-bound cell assemblies. How do these neurons exhibit gamma-frequency coincidence detection capabilities, a feature that is essential for the expression of these physiological observations, despite their slow membrane time constant? In this conductance-based modelling study, we developed quantitative metrics for the temporal window of integration/coincidence detection based on the spike-triggered average (STA) of the neuronal compartment. We employed these metrics in conjunction with quantitative measures for spike initiation dynamics to assess the emergence and dependence of coincidence detection and STA spectral selectivity on various ion channel combinations. We found that the presence of resonating conductances (hyperpolarization-activated cyclic nucleotide-gated or T-type calcium), either independently or synergistically when expressed together, led to the emergence of spectral selectivity in the spike initiation dynamics and a significant reduction in the coincidence detection window (CDW). The presence of A-type potassium channels, along with resonating conductances, reduced the STA characteristic frequency and broadened the CDW, but persistent sodium channels sharpened the CDW by strengthening the spectral selectivity in the STA. Finally, in a morphologically precise model endowed with experimentally constrained channel gradients, we found that somatodendritic compartments expressed functional maps of strong theta-frequency selectivity in spike initiation dynamics and gamma-range CDW. Our results reveal the heavy expression of resonating and spike-generating conductances as the mechanism underlying the robust emergence of stratified gamma-range coincidence detection in the dendrites of hippocampal and cortical pyramidal neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layers of graphene oxide (GO) are found to be good for the permeation of water but not for helium (Science, 2012, 335(6067), 442-444) suggesting that the GO layers are dynamic in the formation of a permeation route depending on the environment they are in (i.e., water or helium). To probe the microscopic origin of this observation we calculate the potential of mean force (PMF) of GO sheets (with oxidized and reduced parts), with the inter-planar distance as a reaction coordinate in helium and water. Our PMF calculation shows that the equilibrium interlayer distance between the oxidized part of the GO sheets in helium is at 4.8 angstrom leaving no space for helium permeation. In contrast, the PMF of the oxidized part of the GO in water shows two minima, one at 4.8 angstrom and another at 6.8 angstrom, corresponding to no water and a water filled region, thus giving rise to a permeation path. The increased electrostatic interaction between water with the oxidized part of the sheet helps the sheet open up and pushes water inside. Based on the entropy calculations for water trapped between graphene sheets and oxidized graphene sheets at different inter-sheet spacings, we also show the thermodynamics of filling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been previously reported that the addition of boron to Ti-6Al-4V results in significant refinement of the as-cast microstructure and enhancement in the strain hardening. However, the mechanism for the latter effect has not been adequately studied. The aim of this study was to understand the reasons for the enhancement in room temperature strain hardening on addition of boron to as cast Ti-6Al-4V alloy. A study was conducted on slip transmission using SEM, TEM, optical profilometry and four point probe resistivity measurements on un-deformed and deformed samples of Ti-6Al-4V-xB with five levels of boron. Optical profilometry was used to quantify the magnitude of offsets on slip traces which in turn provided information about the extent of planar or multiple slip. Studies on deformed samples reveal that while lath boundaries appear to easily permit dislocation slip transmission, colony boundaries are potent barriers to slip. From TEM studies it was also observed that while alloys containing lower boron underwent planar slip, deformation was more homogeneous in higher boron alloys due to multiple slip resulting from large number of colony boundaries. Multiple slip is also proposed to be the prime cause of the enhanced strain hardening.