404 resultados para ORDER-PARAMETER
Resumo:
Purpose: Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. Methods: The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimization procedure that uses the simplex method to find the optimal regularization parameter. The proposed LSQR-type method is compared with the traditional methods such as L-curve, generalized cross-validation (GCV), and recently proposed minimal residual method (MRM)-based choice of regularization parameter using numerical and experimental phantom data. Results: The results indicate that the proposed LSQR-type and MRM-based methods performance in terms of reconstructed image quality is similar and superior compared to L-curve and GCV-based methods. The proposed method computational complexity is at least five times lower compared to MRM-based method, making it an optimal technique. Conclusions: The LSQR-type method was able to overcome the inherent limitation of computationally expensive nature of MRM-based automated way finding the optimal regularization parameter in diffuse optical tomographic imaging, making this method more suitable to be deployed in real-time. (C) 2013 American Association of Physicists in Medicine. http://dx.doi.org/10.1118/1.4792459]
Resumo:
Bulk texture measurement of multi-axial forged body center cubic interstitial free steel performed in this study using x-ray and neutron diffraction indicated the presence of a strong {101}aOE (c) 111 > single texture component. Viscoplastic self-consistent simulations could successfully predict the formation of this texture component by incorporating the complicated strain path followed during this process and assuming the activity of {101}aOE (c) 111 > slip system. In addition, a first-order estimate of mechanical properties in terms of highly anisotropic yield locus and Lankford parameter was also obtained from the simulations.
Resumo:
We develop a unified model to explain the dynamics of driven one dimensional ribbon for materials with strain and magnetic order parameters. We show that the model equations in their most general form explain several results on driven magnetostrictive metallic glass ribbons such as the period doubling route to chaos as a function of a dc magnetic field in the presence of a sinusoidal field, the quasiperiodic route to chaos as a function of the sinusoidal field for a fixed dc field, and induced and suppressed chaos in the presence of an additional low amplitude near resonant sinusoidal field. We also investigate the influence of a low amplitude near resonant field on the period doubling route. The model equations also exhibit symmetry restoring crisis with an exponent close to unity. The model can be adopted to explain certain results on magnetoelastic beam and martensitic ribbon under sinusoidal driving conditions. In the latter case, we find interesting dynamics of a periodic one orbit switching between two equivalent wells as a function of an ac magnetic field that eventually makes a direct transition to chaos under resonant driving condition. The model is also applicable to magnetomartensites and materials with two order parameters. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4790845]
Resumo:
Bilateral filters perform edge-preserving smoothing and are widely used for image denoising. The denoising performance is sensitive to the choice of the bilateral filter parameters. We propose an optimal parameter selection for bilateral filtering of images corrupted with Poisson noise. We employ the Poisson's Unbiased Risk Estimate (PURE), which is an unbiased estimate of the Mean Squared Error (MSE). It does not require a priori knowledge of the ground truth and is useful in practical scenarios where there is no access to the original image. Experimental results show that quality of denoising obtained with PURE-optimal bilateral filters is almost indistinguishable with that of the Oracle-MSE-optimal bilateral filters.
Resumo:
Melting and freezing transitions in two dimensional (2D) systems are known to show highly unusual characteristics. Most of the earlier studies considered atomic systems: the melting of 2D molecular solids is still largely unexplored. In order to understand the role of anisotropy as well as multiple energy and length scales present in molecular systems, here we report computer simulation studies of melting of 2D molecular systems. We computed a limited portion of the solid-liquid phase diagram. We find that the interplay between the strength of isotropic and anisotropic interactions can give rise to rich phase diagram consisting of isotropic liquid and two crystalline phases-honeycomb and oblique. The nature of the transition depends on the relative strength of the anisotropic interaction and a strongly first order melting turns into a weakly first order transition on increasing the strength of the isotropic interaction. This crossover can be attributed to an increase in stiffness of the solid phase free energy minimum on increasing the strength of the anisotropic interaction. The defects involved in melting of molecular systems are quite different from those known for the atomic systems.
Resumo:
In this paper, a simple single-phase grid-connected photovoltaic (PV) inverter topology consisting of a boost section, a low-voltage single-phase inverter with an inductive filter, and a step-up transformer interfacing the grid is considered. Ideally, this topology will not inject any lower order harmonics into the grid due to high-frequency pulse width modulation operation. However, the nonideal factors in the system such as core saturation-induced distorted magnetizing current of the transformer and the dead time of the inverter, etc., contribute to a significant amount of lower order harmonics in the grid current. A novel design of inverter current control that mitigates lower order harmonics is presented in this paper. An adaptive harmonic compensation technique and its design are proposed for the lower order harmonic compensation. In addition, a proportional-resonant-integral (PRI) controller and its design are also proposed. This controller eliminates the dc component in the control system, which introduces even harmonics in the grid current in the topology considered. The dynamics of the system due to the interaction between the PRI controller and the adaptive compensation scheme is also analyzed. The complete design has been validated with experimental results and good agreement with theoretical analysis of the overall system is observed.
Resumo:
Multiferroic materials are characterized by simultaneous magnetic and ferroelectric ordering making them good candidates for magneto-electrical applications. We conducted thermal expansion and magnetostriction measurements in magnetic fields up to 14 T on perovskitic GdMnO3 by highresolution capacitive dilatometry in an effort to determine all longitudinal and transversal components of the magnetostriction tensor. Below the ordering temperature T (N) = 42 K, i.e., within the different complex (incommensurate or complex) antiferromagnetic phases, lattice distortions of up to 100 ppm have been found. Although no change of the lattice symmetry occurs, the measurements reveal strong magneto-structural phenomena, especially in the incommensurate sinusoidal antiferromagnetic phase. A strong anisotropy of the magnetoelastic properties was found, in good agreement with the type and propagation vector of the magnetic structure. We demonstrate that our capacitive dilatometry can detect lattice expansion effects and changes of the dielectric permittivity simultaneously because the sample is housed inside the capacitor. A separation of both effects is possible by shielding the sample. Dielectric transitions could be detected by this method and compared to the critical values of H and T in the magnetic phase diagram. Dielectric changes measured at 1 kHz excitation frequency are detected in GdMnO3 at about 180 K, and between 10 K and 25 K in the canted antiferromagnetic structure which is characterized by a complex magnetic order on both the Gd- and Mn-sites.
Resumo:
Two multicriterion decision-making methods, namely `compromise programming' and the `technique for order preference by similarity to an ideal solution' are employed to prioritise 22 micro-catchments (A1 to A22) of Kherthal catchment, Rajasthan, India and comparative analysis is performed using the compound parameter approach. Seven criteria - drainage density, bifurcation ratio, stream frequency, form factor, elongation ratio, circulatory ratio and texture ratio - are chosen for the evaluation. The entropy method is employed to estimate weights or relative importance of the criterion which ultimately affects the ranking pattern or prioritisation of micro-catchments. Spearman rank correlation coefficients are estimated to measure the extent to which the ranks obtained are correlated. Based on the average ranking approach supported by sensitivity analysis, micro-catchments A6, A10, A3 are preferred (owing to their low ranking) for further improvements with suitable conservation and management practices, and other micro-catchments can be processed accordingly at a later phase on a priority basis. It is concluded that the present approach can be explored for other similar situations with appropriate modifications.
Resumo:
A power filter is necessary to connect the output of a power converter to the grid so as to reduce the harmonic distortion introduced in the line current and voltage by the power converter. Many a times, a transformer is also present before the point of common coupling. Magnetic components often constitute a significant part of the overall weight, size and cost of the grid interface scheme. So, a compact inexpensive design is desirable. A higher-order LCL-filter and a transformer are increasingly being considered for grid interconnection of the power converter. This study proposes a design method based on a three-winding transformer, that generates an integrated structure that behaves as an LCL-filter, with both the filter inductances and the transformer that are merged into a single electromagnetic component. The parameters of the transformer are derived analytically. It is shown that along with a filter capacitor, the transformer parameters provide the filtering action of an LCL-filter. A single-phase full-bridge power converter is operated as a static compensator for performance evaluation of the integrated filter transformer. A resonant integrator-based single-phase phase locked loop and stationary frame AC current controller are employed for grid frequency synchronisation and line current control, respectively.
Resumo:
In this paper, the authors study the structure of a novel binaural sound with a certain phase and amplitude modulation and the response to this excitation when it is applied to natural rewarding circuit of human brain through auditory neural pathways. This novel excitation, also referred to as gyrosonic excitation in this work, has been found to have interesting effects such as stabilization effects on the left and right hemispheric brain signaling as captured by Galvanic Skin Resistance (GSR) measurements, control of cardiac rhythms (observed from ECG signals), mitigation of psychosomatic syndrome, and mitigation of migraine pain. Experimental data collected from human subjects are presented, and these data are examined to categorize the extent of systems disorder and reinforcement reward due to the gyrosonic stimulus. A multi-path reduced-order model has been developed to analyze the GSR signals. The filtered results are indicative of complicated reinforcing reward patterns due to the gyrosonic stimulation when it is used as a control input for patients with psychosomatic and cardiac disorders.
Resumo:
We consider wavenumbers in in vacuo and fluid-filled isotropic and orthotropic shells. Using the Donnell-Mushtari (DM) theory we find compact and elegant asymptotic expansions for the wavenumbers in the intermediate frequency range, i.e., around the ring frequency. This frequency range corresponds to the frequencies where there is a rapid change in the values of bending wavenumbers and is found to exist in isotropic and orthotropic shells (in vacua and fluid-filled) for low circumferential orders n only. The same is first identified using the n=0 mode of an orthotropic shell. Following this, using the expression for the intermediate frequency, asymptotic expansions are found for other cases. Here, in order to get compact expansions we consider slight orthotropy (epsilon << 1) and light fluid loading (mu << 1). Thus, the orthotropy parameter epsilon and the fluid loading parameter mu are used as asymptotic parameters along with the non-dimensional thickness parameter beta. The methodology can be extended to any order of epsilon, only the expansions become unwieldy. The expansions are matched with the numerical solutions of the corresponding dispersion relation. The match is found to be good.
Resumo:
Major emphasis, in compressed sensing (CS) research, has been on the acquisition of sub-Nyquist number of samples of a signal that has a sparse representation on some tight frame or an orthogonal basis, and subsequent reconstruction of the original signal using a plethora of recovery algorithms. In this paper, we present compressed sensing data acquisition from a different perspective, wherein a set of signals are reconstructed at a sampling rate which is a multiple of the sampling rate of the ADCs that are used to measure the signals. We illustrate how this can facilitate usage of anti-aliasing filters with relaxed frequency specifications and, consequently, of lower order.
Resumo:
Wavelet coefficients based on spatial wavelets are used as damage indicators to identify the damage location as well as the size of the damage in a laminated composite beam with localized matrix cracks. A finite element model of the composite beam is used in conjunction with a matrix crack based damage model to simulate the damaged composite beam structure. The modes of vibration of the beam are analyzed using the wavelet transform in order to identify the location and the extent of the damage by sensing the local perturbations at the damage locations. The location of the damage is identified by a sudden change in spatial distribution of wavelet coefficients. Monte Carlo Simulations (MCS) are used to investigate the effect of ply level uncertainty in composite material properties such as ply longitudinal stiffness, transverse stiffness, shear modulus and Poisson's ratio on damage detection parameter, wavelet coefficient. In this study, numerical simulations are done for single and multiple damage cases. It is observed that spatial wavelets can be used as a reliable damage detection tool for composite beams with localized matrix cracks which can result from low velocity impact damage.
Resumo:
The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling alpha(s) and other QCD parameters from the hadronic decays of the tau lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher-order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ``reference model,'' including moments that are poorly described by the standard expansions. The results provide additional support for the plausibility of the description of the Adler function in terms of a small number of dominant renormalons.
Resumo:
A computationally efficient approach that computes the optimal regularization parameter for the Tikhonov-minimization scheme is developed for photoacoustic imaging. This approach is based on the least squares-QR decomposition which is a well-known dimensionality reduction technique for a large system of equations. It is shown that the proposed framework is effective in terms of quantitative and qualitative reconstructions of initial pressure distribution enabled via finding an optimal regularization parameter. The computational efficiency and performance of the proposed method are shown using a test case of numerical blood vessel phantom, where the initial pressure is exactly known for quantitative comparison. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)