444 resultados para Molecular orbitals
Resumo:
Two drug-drug co-crystals of the anti-tuberculosis drugs isoniazid (INH), pyrazinamide (PYR) and 4-aminosalicylic acid (PAS) are reported. The first is the 1 : 1 molecular complex of INH and PAS. The second is the monohydrate of the 1 : 1 complex of PYR and PAS. The crystal structures of both co-crystals are characterized by a number of hydrogen bonded synthons. Hydrogen bonding of the COOH center dot center dot center dot N-pyridine type is found in both cases. In the INH : PAS co-crystal, there are two symmetry independent COOH center dot center dot center dot center dot N-pyridine hydrogen bonds. In one of these, the H-atom is located on the carboxylic group and is indicative of a co-crystal. In the second case, partial proton transfer occurs across the hydrogen bond, and the extent of proton transfer depends on the temperature. This is more indicative of a salt. Drug-drug co-crystals may have some bearing in the treatment of tuberculosis.
Resumo:
Several endogenous and exogenous chemical species, particularly the so-called reactive oxygen species (ROS) and reactive nitrogen oxide species (RNOS), attack deoxyribonucleic acid (DNA) in biological systems producing DNA lesions which hamper normal cell functioning and cause various diseases including mutation and cancer. The guanine (G) base of DNA among all the bases is most susceptible and certain modified guanines get involved in mispairing with other bases during DNA replication. The biological system repairs the abnormal base pairs, but those that are still left cause mutation and cancer. Anti-oxidants present in biological systems can scavenge the ROS and RNOS. Thus three types of molecular events occur in biological media: (i) DNA damage, (ii) DNA repair, and (iii) prevention of DNA damage by scavenging ROS and RNOS. Quantum mechanical methods may be used to unravel molecular mechanisms of such phenomena. Some recent quantum theoretical results obtained on these problems are reviewed here.
Resumo:
A new chromium(III)-Schiff base complex, [Cr(5-chlorosalprn)(H2O)(2)]ClO4, where salprn=N,N'-propylenebis(salicylideneimine) has been prepared and characterized by electrospray ionization mass spectrometric (ESIMS) analysis and other spectroscopic techniques. Single crystal X-ray data reveal that the complex assumes a trans-diaquo structure, [Cr(C17H18Cl2N2O4)]ClO4.H2O. The effect of phenyl ring substituents on the rate of formation of [O=Cr-V Schiff base](+) has been investigated. The bimolecular rate constant for the formation of O=Cr-V species by the [Cr(Schiff base)(H2O)(2)]ClO4, where the Schiff base=salprn, (1) and 5-chlorosalprn, (2) with PhOI was compared. In the case of (2) the rate was found to be faster by an order of magnitude at pH=4 compared to (1). The introduction of a chloro-substituent on the phenyl ring not only influences the rate of redox reactivity but also the pKa values of aquo ligands of the complexes, indicating the difference in the electronic environment around the metal ion in both (1) and (2).
Resumo:
Hybrid systems are constructs of different molecular entities, natural or unnatural, to generate functional molecules in which the characteristics of various components are modulated, amplified or give rise to entirely new properties. These hybrids can be designed from carefully selected components either through domain intergration of key structural/functional features or via straightforward covalent linkages. Some of the recently reported hybrid systems based on steroid, carbohydrate, C-60-fullerene platforms, amongst others, mainly crafted with the object of enhancement of the therapeutical spectrum, will be discussed.
Resumo:
A homologue of the segment polarity gene Cubitus interruptus from Bombyx Mori, (BmCi) has been cloned and characterized. This region harbouring Zn2+ finger motif is highly conserved across species. In B. Mori, BmCi RNA expression was first detected at stage 6 of embryogenesis, which reached maximum levels at stage 21C and was maintained until larval hatching. The segmentally reiterated striped pattern of transcript distribution in stage 21C embryos was in conformity with its predicted segment polarity nature. BmCi was expressed in the fore- and hind-wing discs, ovaries, testes and gut during fifth larval intermolt, reminiscent of its expression domains in Drosophila. Besides, BmCi expression was seen in the. anterior part of the middle silkglands in late embryonic stages, and this pattern was maintained during larval development. The transition from third to fourth and fifth larval intermolts was accompanied by an increase in the transcript levels in the middle silkglands. Our results demonstrate the presence of a novel expression domain for Ci in Bombyx. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Surface orientation of self-assembled molecular films of 2,9,6,23-tetraamino cobalt phthalocyanine on gold and silver is shown to determine the nature and the products of the electrocatalytic reduction of oxygen.
Resumo:
The formation of molecular films of 2,9,16,23-tetraamino metal phthalocyanines [TAM(II)Pc; M (II) = Co, Cu, and TAM(III)Pc; M = Fe] by spontaneous adsorption on gold and silver surfaces is described. The properties of these films have been investigated by cyclic voltammetry, impedance, and FT-Raman spectroscopy. The charge associated with Co(II) and Co(I) redox couple in voltammetric data leads to a coverage of (0.35+/-0.05) x 10(-10) mol cm(-2), suggesting that the tetraamino cobalt phthalocyanine is adsorbed as a monolayer with an almost complete coverage. The blocking behavior of the films toward oxygen and Fe(CN)(6)(3-/4-) redox couple have been followed by cyclic voltammetry and impedance measurements. This leads to an estimate of the coverage of about 85 % in the case of copper and the iron analogs. FT-Raman studies show characteristic bands around 236 cm(-1) revealing the interaction between the metal substrate and the nitrogen of the -NH2 group on the phthalocyanine molecules.
Resumo:
The infrared spectrum of the matrix-isolated species of thioacetamide has been simulated using the extended molecular mechanics method. The equilibrium structure, vibrational frequencies, dipole moment and infrared absorption intensities of thioacetamide have been calculated in good agreement with the experiment. The vibrational frequencies and infrared absorption intensities for the isotopic molecules (CH2CSNH2)-C-13, (CH3CSNH2)-N-15 and (CH2CSND2)-C-13 have also been calculated consistent with the experiment. The infrared spectra of the matrix isolated species of N- and C- deuterated isotopomers of thioacetamide, CH3CSND2 and CD3CSNH2 have also been simulated in satisfactory agreement with the experimental spectra.
Resumo:
Angiogenin is a protein belonging to the superfamily of RNase A. The RNase activity of this protein is essential for its angiogenic activity. Although members of the RNase A family carry out RNase activity, they differ markedly in their strength and specificity. In this paper, we address the problem of higher specificity of angiogenin towards cytosine against uracil in the first base binding position. We have carried out extensive nano-second level molecular dynamics(MD) computer simulations on the native bovine angiogenin and on the CMP and UMP complexes of this protein in aqueous medium with explicit molecular solvent. The structures thus generated were subjected to a rigorous free energy component analysis to arrive at a plausible molecular thermodynamic explanation for the substrate specificity of angiogenin.
Resumo:
We report theoretical investigations on some [Ring]Li--(+) compounds, which can exhibit a through ring umbrella like inversion. Our studies predict cyclononatetraenyllithium to be molecular rattle, in which such inversions can occur. The potential energy for the motion is a double well, with an activation barrier of 11.50 kcal/mol. We find that the lithium should go through the ring easily by an excitation to nu = 17 vibrational level. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The title compound I (24-(S)-Hydroxy Coprastan-3-one) crystallises in orthorhombic space group P2(1)2(1)2(1) with Z = 4. The unit cell dimensions are a = 6.701(2)Angstrom, b = 11.506(8)Angstrom, c = 32.183(4)Angstrom, V = 2481(2)Angstrom (3), D-cal = 1.077 Mg/m(3). The tide compound II (24-(R)-Hydroxy Coprastan-3-one) crystallises in orthorhombic space group P212121 with two molecules per assymetric unit and with Z = 8. The Unit cell dimensions are a = 10.954(2)Angstrom, b = 21.757(6)Angstrom, c = 21.130(7)Angstrom, V = 5035.0(2)Angstrom (3), D-cal = 1.062 Mg/m(3). In compound I and in both the molecules of compound II, the rings A, B & C are in chair conformation and the five membered ring D is in envelope conformation. The priority sequence attached to the chiral carbon C24 has "S" designation in compound I and "R" designation in compound II. The structures are stabilized by C-H . . .O and O-H---O hydrogen bonds.
Resumo:
Molecular complexes of melamine with hydroxy and dihydroxybenzoic acids have been analyzed to assess the collective role of the hydroxyl (OH) and carboxyl (COOH) functionalities in the recognition process. In most cases, solvents of crystallization do play a major role in self-assembly and structure stabilization. Hydrated compounds generate linear chains of melamine molecules with acid molecules pendant resulting in a zipper architecture. However, anhydrous and solvated compounds generate tetrameric units consisting of melamine dimers together with acid molecules. These tetramers in turn interweave to form a Lincoln log arrangement in the crystal. The salt/co-crystal formation in these complexes cannot be predicted apriori on the basis of Delta pK(a) values as there exists a salt-to-co-crystal continuum.
Resumo:
The protein MsRbpA from Mycobacterium smegmatis rescues RNA polymerase (RNAP) from the inhibitory effect of rifampicin (Rif). We have reported previously that MsRbpA interacts with the beta-subunit of RNAP and that the effect of MsRbpA on Rif-resistant (Rif(R)) RNAP is minimal. Here we attempted to gain molecular insights into the mechanism of action of this protein with respect to its role in rescuing RNAP from Rif-mediated transcription inhibition. Our experimental approach comprised multiple-round transcription assays, fluorescence spectroscopy, MS and surface plasmon resonance in order to meet the above objective. Based on our molecular studies we propose here that Rif is released from its binding site in the RNAP-Rif complex in the presence of MsRbpA. Biophysical studies reveal that the location of MsRbpA on RNAP is at the junction of the beta- and beta'-subunits, close to the Rif-binding site and the (i + 1) site on RNAP.
Resumo:
The indium nitride (InN)-based nanometric-objects were grown directly on a c-sapphire substrate by using plasma-assisted molecular beam epitaxy (PAMBE) at different substrate temperatures. High resolution X-ray diffraction (HRXRD) reveals the InN (0002) reflection and full width at half maximum (FWHM) found to be decreased with increasing the growth temperature. The size, height and density of the grown nanometric-objects studied by scanning electron microscopy (SEM) has remarkable differences, evidencing the decisive role of substrate temperature. Photoluminescence (PL) studies revealed that the emission energy is shifted towards the higher side from the bulk value, i.e., a blue shift in the PL spectra was observed. The temperature dependence of the PL peak position shows an ``S-shaped'' emission energy shift, which can be attributed to the localization of carriers in the nanometric-objects.