447 resultados para Indole 3-carbinol
Resumo:
Polarographic reduction potentials of seven 3-substituted phenanthrenequinones have been determined in aqueous dioxan and aqueous ethanol under different pH conditions. The substituent effects on the reduction potentials could be correlated with the Hammett σ- constants (correlation coefficients> 0·995). The possibility of using reduction potentials as an accurate measure of resonance energy has been pointed out.
Resumo:
The first two members of the new TlSrn+1−xLnxCunO2n+3+δ (Ln=La, Pr, or Nd) series of superconducting cuprates possessing 1021 and 1122 type structures are described. The n=1 (1021) members with Tcs around 40 K have electrons or holes as the majority charge carriers depending on x. The n=2 (1122) cuprate (Ln=Pr or Nd) shows a Tc in the 80–90 K range.
Resumo:
In order to understand the mechanism of decarboxylation by 2,3-dihydroxybenzoic acid decarboxylase, chemical modification studies were carried out. Specific modification of the amino acid residues with diethylpyrocarbonate, N-bromosuccinimide and N-ethylmaleiimide revealed that at least one residue each of histidine, tryptophan and cysteine were essential for the activity. Various substrate analogs which were potential inhibitors significantly protected the enzyme against inactivation. The modification of residues at low concentration of the reagents and the protection experiments suggested that these amino acid residues might be present at the active site. Studies also suggested that the carboxyl and ortho-hydroxyl groups of the substrate are essential for interaction with the enzyme.
Resumo:
The molecule of title compound, C11H10ClNO, is close to being planar (r.m.s deviation for the non-H atoms = 0.017 angstrom). In the crystal, molecules interact by way of O-H center dot center dot center dot O hydrogen bonds, generating C(2) chains propagating in [010]. The crystal structure is consolidated by C-H center dot center dot center dot pi interactions and aromatic pi-pi stacking interactions [centroid-centroid distance = 3.661 (2) angstrom].
Resumo:
The title compound, C11H10ClNO, is close to being planar (r.m.s deviation for the non-H atoms = 0.026 angstrom). In the crystal,molecules are linked by O-H center dot center dot center dot O hydrogen bonds, generating C(2) chains, and weak C-H center dot center dot center dot pi interactions and aromatic pi-pi stacking interactions [centroid-centroid distance = 3.713 (3) angstrom] help to consolidate the sturcture.
Resumo:
In the title molecule, C19H14ClN3O, the quinoline and quinazoline ring systems form a dihedral angle of 80.75 (4)degrees. In the crystal, the molecules are linked by pairs of C-H center dot center dot center dot N hydrogen bonds into centrosymmetric dimers, generating R-2(2)(6) ring motifs. The structure is further stabilized by C-H center dot center dot center dot pi interactions and pi-pi stacking interactions [centroid-centroid distances = 3.7869 (8) and 3.8490 (8) angstrom].
Resumo:
In the title Mannich base, C20H21N3O3, an isatin derivative of thymol the O-CH2-C(=O)-N(H)-N fragment connecting the aromatic and fused-ring systems is approximately planar, with the N-N single bond in a Zmconfiguration. The amino H atom of this N-N fragment is intramolecularly hydrogen bonded to the carbonyl O atom of the indolinone fused ring as well as to the phenoxy O atom of the aromat ring. The amino H atom of the indoline fused ring forms a hydrogen bond with the double-bond O atom of an adjacent molecule, this hydrogen bond giving rise to a linear chain motif.
Resumo:
Mononuclear, binuclear and trinuclear silver(l) complexes were obtained unexpectedly while probing the reactivity of diphosphazane ligands of the type X2PN(Pr-i)PXY towards the ruthenium-based precursor Ru(bipy)(2)Cl-2 center dot 2H(2)O, in the presence of a silver salt as a chloride scavenger. Subsequently, the reactions of AgX [X = Cl, NO3 or CF3SO3] with Ph2PN(R)PPh(Y) [R = H, Y = Ph; R = Pr-i, Y = Ph or OC6H3Me2-2,6] in a 1: 1 or 1:2 molar ratio have been investigated. Mononuclear or binuclear Ag(I) complexes containing either chelating or bridging diphosphazane ligands are obtained. Trinuclear silver(l) complexes are accessible by the treatment of diphosphazane ligands, Ph2PN(R)PPh2 [R = H, Pr-i] with AgCl using piperidine as the solvent. In the presence of a suitable chloride donor species, the mononuclear and binuclear complexes of Ph2PN(Pr-i)PPh2 are transformed slowly to the trinuclear complex [Ag-3(mu-Cl)(2){Ph2PN(Pr-i)PPh2}(3)]X, over a period 20 h. The structures of representative complexes have been confirmed by X-ray crystallography and the salient structural features are discussed
Resumo:
A simple firing delay circuit for 3-φ fully controlled bridge using a phase locked loop is described. The circuit uses very few components and is an improved scheme over the existing methods. The use of this circuit in three-phase thyristor converters and 'circulating current free' mode dual converters is described.
Resumo:
Single crystals of a symmetrically substituted molecule, 1,3,5-triazine-2,4,6-triaminehexaacetic acid, (TTHA) and its Ca2+ salt have been synthesized, the analysis of which reveals the existence of novel channel type cavities and helical packing organizations in the crystals.
Resumo:
The temperature and pressure dependence of Cl-35 NQR frequency and spin lattice relaxation time (T-1) were investigated in 2,3-dichloroanisole. Two NQR signals were observed throughout the temperature and pressure range studied. T-1 were measured in the temperature range from 77 to 300 K and from atmospheric pressure to 5 kbar. Relaxation was found to be due to the torsional motion of the molecule and also reorientation f motion of the CH3 group. T-1 versus temperature data were analyzed on the basis of Woessner and Gutowsky model, and the activation energy for the reorientation of the CH3 group was estimated. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities were also obtained. NQR frequency shows a nonlinear behavior with pressure, indicating both dynamic and static effects of pressure. The pressure coefficients were observed to be positive for both the lines. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. The variation of spin lattice time with pressure was very small, showing that the relaxation is mainly due to the torsional motions of the molecules. Copyright (C) 2010 John Wiley & Sons, Ltd.