363 resultados para High-energy milling
Resumo:
We consider minimal models of gauge mediated supersymmetry breaking with an extra U(1) factor in addition to the Standard Model gauge group. A U(1) charged, Standard Model singlet is assumed to be present which allows for an additional NMSSM like coupling, lambda HuHdS. The U(1) is assumed to be flavour universal. Anomaly cancellation in the MSSM sector requires additional coloured degrees of freedom. The S field can get a large vacuum expectation value along with consistent electroweak symmetry breaking. It is shown that the lightest CP even Higgs boson can attain mass of the order of 125 GeV. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
Resumo:
We investigate constraints imposed by entanglement on gravity in the context of holography. First, by demanding that relative entropy is positive and using the Ryu-Takayanagi entropy functional, we find certain constraints at a nonlinear level for the dual gravity. Second, by considering Gauss-Bonnet gravity, we show that for a class of small perturbations around the vacuum state, the positivity of the two point function of the field theory stress tensor guarantees the positivity of the relative entropy. Further, if we impose that the entangling surface closes off smoothly in the bulk interior, we find restrictions on the coupling constant in Gauss-Bonnet gravity. We also give an example of an anisotropic excited state in an unstable phase with broken conformal invariance which leads to a negative relative entropy.
Resumo:
We generalize the results of arXiv : 1212.1875 and arXiv : 1212.6919 on attraction basins and their boundaries to the case of a specific class of rotating black holes,namely the ergo-free branch of extremal black holes in Kaluza-Klein theory. We find that exact solutions that span the attraction basin can be found even in the rotating case by appealing to certain symmetries of the equations of motion. They are characterized by two asymptotic parameters that generalize those of the non-rotating case, and the boundaries of the basin are spinning versions of the (generalized) subtractor geometry. We also give examples to illustrate that the shape of the attraction basin can drastically change depending on the theory.
Resumo:
We study the dynamics of a one-dimensional lattice model of hard core bosons which is initially in a superfluid phase with a current being induced by applying a twist at the boundary. Subsequently, the twist is removed, and the system is subjected to periodic delta-function kicks in the staggered on-site potential. We present analytical expressions for the current and work done in the limit of an infinite number of kicks. Using these, we show that the current (work done) exhibits a number of dips (peaks) as a function of the driving frequency and eventually saturates to zero (a finite value) in the limit of large frequency. The vanishing of the current (and the saturation of the work done) can be attributed to a dynamic localization of the hard core bosons occurring as a consequence of the periodic driving. Remarkably, we show that for some specific values of the driving amplitude, the localization occurs for any value of the driving frequency. Moreover, starting from a half-filled lattice of hard core bosons with the particles localized in the central region, we show that the spreading of the particles occurs in a light-cone-like region with a group velocity that vanishes when the system is dynamically localized.
Resumo:
We study the Majorana modes, both equilibrium and Floquet, which can appear at the edges of the Kitaev model on the honeycomb lattice. We first present the analytical solutions known for the equilibrium Majorana edge modes for both zigzag and armchair edges of a semi-infinite Kitaev model and chart the parameter regimes in which they appear. We then examine how edge modes can be generated if the Kitaev coupling on the bonds perpendicular to the edge is varied periodically in time as periodic delta-function kicks. We derive a general condition for the appearance and disappearance of the Floquet edge modes as a function of the drive frequency for a generic d-dimensional integrable system. We confirm this general condition for the Kitaev model with a finite width by mapping it to a one-dimensional model. Our numerical and analytical study of this problem shows that Floquet Majorana modes can appear on some edges in the kicked system even when the corresponding equilibrium Hamiltonian has no Majorana mode solutions on those edges. We support our analytical studies by numerics for a finite sized system which show that periodic kicks can generate modes at the edges and the corners of the lattice.
Resumo:
We study the nonequilibrium dynamics of quenching through a quantum critical point in topological systems, focusing on one of their defining features: ground-state degeneracies and associated topological sectors. We present the notion of ``topological blocking,'' experienced by the dynamics due to a mismatch in degeneracies between two phases, and we argue that the dynamic evolution of the quench depends strongly on the topological sector being probed. We demonstrate this interplay between quench and topology in models stemming from two extensively studied systems, the transverse Ising chain and the Kitaev honeycomb model. Through nonlocal maps of each of these systems, we effectively study spinless fermionic p-wave paired topological superconductors. Confining the systems to ring and toroidal geometries, respectively, enables us to cleanly address degeneracies, subtle issues of fermion occupation and parity, and mismatches between topological sectors. We show that various features of the quench, which are related to Kibble-Zurek physics, are sensitive to the topological sector being probed, in particular, the overlap between the time-evolved initial ground state and an appropriate low-energy state of the final Hamiltonian. While most of our study is confined to translationally invariant systems, where momentum is a convenient quantum number, we briefly consider the effect of disorder and illustrate how this can influence the quench in a qualitatively different way depending on the topological sector considered.
Resumo:
We consider free fermion and free boson CFTs in two dimensions, deformed by a chemical potential mu for the spin-three current. For the CFT on the infinite spatial line, we calculate the finite temperature entanglement entropy of a single interval perturbatively to second order in mu in each of the theories. We find that the result in each case is given by the same non-trivial function of temperature and interval length. Remarkably, we further obtain the same formula using a recent Wilson line proposal for the holographic entanglement entropy, in holomorphically factorized form, associated to the spin-three black hole in SL(3, R) x SL(3, R) Chern-Simons theory. Our result suggests that the order mu(2) correction to the entanglement entropy may be universal for W-algebra CFTs with spin-three chemical potential, and constitutes a check of the holographic entanglement entropy proposal for higher spin theories of gravity in AdS(3).
Resumo:
We study Heisenberg spin-1/2 and spin-1 chains with alternating ferromagnetic (J(1)(F)) and antiferromagnetic (J(1)(A)) nearest-neighbor interactions and a ferromagnetic next-nearest-neighbor interaction (J(2)(F)). In this model frustration is present due to the non-zero J(2)(F). The model with site spin s behaves like a Haldane spin chain, with site spin 2s in the limit of vanishing J(2)(F) and large J(1)(F)/J(1)(A). We show that the exact ground state of the model can be found along a line in the parameter space. For fixed J(1)(F), the phase diagram in the space of J(1)(A)-J(2)(F) is determined using numerical techniques complemented by analytical calculations. A number of quantities, including the structure factor, energy gap, entanglement entropy and zero temperature magnetization, are studied to understand the complete phase diagram. An interesting and potentially important feature of this model is that it can exhibit a macroscopic magnetization jump in the presence of a magnetic field; we study this using an effective Hamiltonian.
Resumo:
We study the effects of extended and localized potentials and a magnetic field on the Dirac electrons residing at the surface of a three-dimensional topological insulator like Bi2Se3. We use a lattice model to numerically study the various states; we show how the potentials can be chosen in a way which effectively avoids the problem of fermion doubling on a lattice. We show that extended potentials of different shapes can give rise to states which propagate freely along the potential but decay exponentially away from it. For an infinitely long potential barrier, the dispersion and spin structure of these states are unusual and these can be varied continuously by changing the barrier strength. In the presence of a magnetic field applied perpendicular to the surface, these states become separated from the gapless surface states by a gap, thereby giving rise to a quasi-one-dimensional system. Similarly, a magnetic field along with a localized potential can give rise to exponentially localized states which are separated from the surface states by a gap and thereby form a zero-dimensional system. Finally, we show that a long barrier and an impurity potential can produce bound states which are localized at the impurity, and an ``L''-shaped potential can have both bound states at the corner of the L and extended states which travel along the arms of the potential. Our work opens the way to constructing wave guides for Dirac electrons.
Resumo:
Planck scale lepton number violation is an interesting and natural possibility to explain nonzero neutrino masses. We consider such operators in the context of Randall-Sundrum (RS1) scenarios. Implementation of this scenario with a single Higgs localized on the IR brane (standard RS1) is not phenomenologically viable as they lead to inconsistencies in the charged lepton mass fits. In this paper we propose a setup with two Higgs doublets. We present a detailed numerical analysis of the fits to fermion masses and mixing angles. This model solves the issues regarding the fermion mass fits but solutions with consistent electroweak symmetry breaking are highly fine-tuned. A simple resolution is to consider supersymmetry in the bulk and a detailed discussion of which is provided. Constraints from flavor are found to be strong and minimal flavor violation (MFV) is imposed to alleviate them.
Resumo:
We consider the issue of the top quark Yukawa coupling measurement in a model-independent and general case with the inclusion of CP violation in the coupling. Arguably the best process to study this coupling is the associated production of the Higgs boson along with a t (t) over bar pair in a machine like the International Linear Collider (ILC). While detailed analyses of the sensitivity of the measurement-assuming a Standard Model (SM)-like coupling is available in the context of the ILC-conclude that the coupling could be pinned down to about a 10% level with modest luminosity, our investigations show that the scenario could be different in the case of a more general coupling. The modified Lorentz structure resulting in a changed functional dependence of the cross section on the coupling, along with the difference in the cross section itself leads to considerable deviation in the sensitivity. Our studies of the ILC with center-of-mass energies of 500 GeV, 800 GeV, and 1000 GeV show that moderate CP mixing in the Higgs sector could change the sensitivity to about 20%, while it could be worsened to 75% in cases which could accommodate more dramatic changes in the coupling. Detailed considerations of the decay distributions point to a need for a relook at the analysis strategy followed for the case of the SM, such as for a model-independent analysis of the top quark Yukawa coupling measurement. This study strongly suggests that a joint analysis of the CP properties and the Yukawa coupling measurement would be the way forward at the ILC and that caution must be exercised in the measurement of the Yukawa couplings and the conclusions drawn from it.
Resumo:
Resolution of cosmological singularities is an important problem in any full theory of quantum gravity. The Milne orbifold is a cosmology with a big-bang/big-crunch singularity, but being a quotient of flat space it holds potential for resolution in string theory. It is known, however, that some perturbative string amplitudes diverge in the Milne geometry. Here we show that flat space higher spin theories can effect a simple resolution of the Milne singularity when one embeds the latter in 2 + 1 dimensions. We explain how to reconcile this with the expectation that non-perturbative string effects are required for resolving Milne. Along the way, we introduce a Grassmann realization of the inonfi-Wigner contraction to export much of the AdS technology to -our flat space computation. (C) 2014 The Authors. Published by Elsevier BAT.
Resumo:
We calculate one, two and three point functions of the holographic stress tensor for any bulk Lagrangian of the form L (g(ab), R-abcd, del(e) R-abcd). Using the first law of entanglement, a simple method has recently been proposed to compute the holographic stress tensor arising from a higher derivative gravity dual. The stress tensor is proportional to a dimension dependent factor which depends on the higher derivative couplings. In this paper, we identify this proportionality constant with a B-type trace anomaly in even dimensions for any bulk Lagrangian of the above form. This in turn relates to C-T, the coefficient appearing in the two point function of stress tensors. We use a background field method to compute the two and three point function of stress tensors for any bulk Lagrangian of the above form in arbitrary dimensions. As an application we consider general situations where eta/s for holographic plasmas is less than the KSS bound.
Resumo:
We use the bulk Hamiltonian for a three-dimensional topological insulator such as Bi-2 Se-3 to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential barrier along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering and conductance across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states.
Resumo:
Rechargeable lithium batteries have ushered the wireless revolution over last two decades and are now matured to enable green automobiles. However, the growing concern on scarcity and large-scale applications of lithium resources have steered effort to realize sustainable sodium-ion batteries, Na and Fe being abundant and low-cost charge carrier and redox centre, respectively. However, their performance is limited owing to low operating voltage and sluggish kinetics. Here we report a hitherto-unknown material with entirely new composition and structure with the first alluaudite-type sulphate framework, Na2Fe2(SO4)(3), registering the highest-ever Fe3+/ Fe2+ redox potential at 3.8V (versus Na, and hence 4.1V versus Li) along with fast rate kinetics. Rare-metal-free Na-ion rechargeable battery system compatible with the present Li-ion battery is now in realistic scope without sacrificing high energy density and high power, and paves way for discovery of new earth-abundant sustainable cathodes for large-scale batteries.