434 resultados para Gooch Method
Resumo:
This paper reports improved performance of discharge plasma in filtered engine exhaust treatment. Our paper deals about the removal of NOX emissions from the diesel exhaust by electric discharge plasma. For the treatment of diesel exhaust a new type of reactor referred to as crossflow dielectric barrier discharge reactor has been used, where the gas flow is perpendicular to the corona electrode. Experiments were conducted at different flow rates ranging from 2 l/min to 10 l/min. The discharge plasma assisted barrier discharge reactor has shown promising results in NOX removal at high flow rates.
Resumo:
The commercial automotive mufflers are generally of a complicated shape with multiply connected parts and complex acoustic elements. The analysis of such complex mufflers has always been a great challenge. In this paper, an Integrated Transfer Matrix method has been developed to analyze complex mufflers. Integrated transfer matrix relates the state variables across the entire cross-section of the muffler shell, as one moves along the axis of the muffler, and can be partitioned appropriately in order to relate the state variables of different tubes constituting the cross-section. The paper presents a generalized one-dimensional (1-D) approach, using the transfer matrices of simple acoustic elements, which are available from the literature. The present approach is robust and flexible owing to its capability to construct an overall matrix of the muffler with the transfer matrices of individual acoustic elements and boundary conditions, which can then be used to evaluate the transmission loss, insertion loss, etc. Results from the present approach have been validated through comparisons with the available experimental and three-dimensional finite element method (FEM) based results. The results show good agreement with both measurements and FEM analysis up to the cut-off frequency. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports improved performance of advantages when compared to its counterpart as it is cost discharge plasma in filtered engine exhaust treatment. Our effective, low capital and operation costs, salable by- paper deals about the removal of NOX emissions from the diesel products, and integration with the existing systems. In this exhaust by electric discharge plasma. For the treatment of diesel paper we describe an alternate reactor geometry referred to exhaust a new type of reactor referred to as cross-flow dielectric as cross-flow DBD reactor, where the exhaust gas flow barrier discharge reactor has been used, where the gas flow is perpendicular to the wire-cylinder reaction chamber. This perpendicular to the corona electrode. Experiments were reactor is used to treat the actual exhaust of a 3.75 kW diesel- conducted at different flow rates ranging from 2 l/min to 10 l/ generator set. The main emphasis is laid on the NOX treatment min. The discharge plasma assisted barrier discharge reactor of diesel engine exhaust. Experiments were carried out at has shown promising results in NOX removal at high flow rates.
Resumo:
A variable resolution global spectral method is created on the sphere using High resolution Tropical Belt Transformation (HTBT). HTBT belongs to a class of map called reparametrisation maps. HTBT parametrisation of the sphere generates a clustering of points in the entire tropical belt; the density of the grid point distribution decreases smoothly in the domain outside the tropics. This variable resolution method creates finer resolution in the tropics and coarser resolution at the poles. The use of FFT procedure and Gaussian quadrature for the spectral computations retains the numerical efficiency available with the standard global spectral method. Accuracy of the method for meteorological computations are demonstrated by solving Helmholtz equation and non-divergent barotropic vorticity equation on the sphere. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we investigate a numerical method for the solution of an inverse problem of recovering lacking data on some part of the boundary of a domain from the Cauchy data on other part for a variable coefficient elliptic Cauchy problem. In the process, the Cauchy problem is transformed into the problem of solving a compact linear operator equation. As a remedy to the ill-posedness of the problem, we use a projection method which allows regularization solely by discretization. The discretization level plays the role of regularization parameter in the case of projection method. The balancing principle is used for the choice of an appropriate discretization level. Several numerical examples show that the method produces a stable good approximate solution.
Resumo:
A finite-element scheme based on a coupled arbitrary Lagrangian-Eulerian and Lagrangian approach is developed for the computation of interface flows with soluble surfactants. The numerical scheme is designed to solve the time-dependent Navier-Stokes equations and an evolution equation for the surfactant concentration in the bulk phase, and simultaneously, an evolution equation for the surfactant concentration on the interface. Second-order isoparametric finite elements on moving meshes and second-order isoparametric surface finite elements are used to solve these equations. The interface-resolved moving meshes allow the accurate incorporation of surface forces, Marangoni forces and jumps in the material parameters. The lower-dimensional finite-element meshes for solving the surface evolution equation are part of the interface-resolved moving meshes. The numerical scheme is validated for problems with known analytical solutions. A number of computations to study the influence of the surfactants in 3D-axisymmetric rising bubbles have been performed. The proposed scheme shows excellent conservation of fluid mass and of the total mass of the surfactant. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The synthesis of cobalt-doped ZnO nanowires is achieved using a simple, metal salt decomposition growth technique. A sequence of drop casting on a quartz substrate held at 100 degrees C and annealing results in the growth of nanowires of average (modal) length similar to 200 nm and diameter of 15 +/- 4 nm and consequently an aspect ratio of similar to 13. A variation in the synthesis process, where the solution of mixed salts is deposited on the substrate at 25 degrees C, yields a grainy film structure which constitutes a useful comparator case. X-ray diffraction shows a preferred 0001] growth direction for the nanowires while a small unit cell volume contraction for Co-doped samples and data from Raman spectroscopy indicate incorporation of the Co dopant into the lattice; neither technique shows explicit evidence of cobalt oxides. Also the nanowire samples display excellent optical transmission across the entire visible range, as well as strong photoluminescence (exciton emission) in the near UV, centered at 3.25 eV. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper, the well-known Adomian Decomposition Method (ADM) is modified to solve the fracture laminated multi-directional problems. The results are compared with the existing analytical/exact or experimental method. The already known existing ADM is modified to improve the accuracy and convergence. Thus, the modified method is named as Modified Adomian Decomposition Method (MADM). The results fromMADM are found to converge very quickly, simple to apply for fracture(singularity) problems and are more accurate compared to experimental and analytical methods. MADM is quite efficient and is practically well-suited for use in these problems. Several examples are given to check the reliability of the present method. In the present paper, the principle of the decomposition method is described, and its advantages form the analyses of fracture of laminated uni-directional composites.
Resumo:
The nonlocal term in the nonlinear equations of Kirchhoff type causes difficulties when the equation is solved numerically by using the Newton-Raphson method. This is because the Jacobian of the Newton-Raphson method is full. In this article, the finite element system is replaced by an equivalent system for which the Jacobian is sparse. We derive quasi-optimal error estimates for the finite element method and demonstrate the results with numerical experiments.
Resumo:
The paper discusses basically a wave propagation based method for identifying the damage due to skin-stiffener debonding in a stiffened structure. First, a spectral finite element model (SFEM) is developed for modeling wave propagation in general built-up structures, using the concept of assembling 2D spectral plate elements and the model is then used in modeling wave propagation in a skin-stiffener type structure. The damage force indicator (DFI) technique, which is derived from the dynamic stiffness matrix of the healthy stiffened structure (obtained from the SFEM model) along with the nodal displacements of the debonded stiffened structure (obtained from 2D finite element model), is used to identify the damage due to the presence of debond in a stiffened structure.
Resumo:
This work focuses on the formulation of an asymptotically correct theory for symmetric composite honeycomb sandwich plate structures. In these panels, transverse stresses tremendously influence design. The conventional 2-D finite elements cannot predict the thickness-wise distributions of transverse shear or normal stresses and 3-D displacements. Unfortunately, the use of the more accurate three-dimensional finite elements is computationally prohibitive. The development of the present theory is based on the Variational Asymptotic Method (VAM). Its unique features are the identification and utilization of additional small parameters associated with the anisotropy and non-homogeneity of composite sandwich plate structures. These parameters are ratios of smallness of the thickness of both facial layers to that of the core and smallness of 3-D stiffness coefficients of the core to that of the face sheets. Finally, anisotropy in the core and face sheets is addressed by the small parameters within the 3-D stiffness matrices. Numerical results are illustrated for several sample problems. The 3-D responses recovered using VAM-based model are obtained in a much more computationally efficient manner than, and are in agreement with, those of available 3-D elasticity solutions and 3-D FE solutions of MSC NASTRAN. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Presented is a new method for making composition graded metal-ceramic composites using reactive inter-diffusion between a metal and a complex ceramic. Composition variation in both metal and ceramic phases with distance along the direction of diffusion is achieved. The design criteria for developing such composites are discussed. The system should exhibit extensive solid solubility in both metallic and ceramic phases, a defined gradation in the stabilities of the oxides, and mobility of electrons or holes in the oxide solid solution. The complex ceramic used for making the composite should be polycrystalline with sufficient porosity to accommodate the volume expansion caused by alloy precipitation. An inert atmosphere to prevent oxidation and high processing temperature to facilitate diffusive transport are required. The process is illustrated using the reaction couples Fe-NiTiO3, Fe-(Mg,Co)TiO3 and Fe-(Ni,Co)TiO3.
Resumo:
We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin approximation due to pure advection in the internal property coordinates. The key idea is to split the high-dimensional population balance equation into two low-dimensional equations, and discretize the low-dimensional equations separately. In the proposed splitting scheme, the shape of the physical domain can be arbitrary, and different discretizations can be applied to the low-dimensional equations. In particular, we discretize the physical and internal spaces with the standard Galerkin and Streamline Upwind Petrov Galerkin (SUPG) finite elements, respectively. The stability and error estimates of the Galerkin/SUPG finite element discretization of the population balance equation are derived. It is shown that a slightly more regularity, i.e. the mixed partial derivatives of the solution has to be bounded, is necessary for the optimal order of convergence. Numerical results are presented to support the analysis.
Resumo:
A mild, environmentally friendly method for reduction of aromatic nitro group to amine is reported, using zinc powder in aqueous solutions of chelating ethers. The donor ether acts as a ligand and also serves as a co-solvent. Water is the proton source. This procedure is also a new method for the activation of zinc for electron transfer reduction of aromatic nitro compounds. The reduction is accomplished in a neutral medium and other reducing groups remained unaffected. The ethers used are dioxolane, 1,4-dioxane, ethoxymethoxyethane, dimethoxymethane, 1,2-dimethoxyethane, and diglyme.
Resumo:
A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method was developed to determine olanzapine (OLZ) in human urine. After solid-phase extraction with SPE cartridge, the urine sample was analysed on a C-18 column (Symmetry 3.5 mu m, 50 x 4.6 mm i.d) interfaced with a triple quadrupole tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of ammonium acetate (pH 7.8)-acetonitrile (10:90, v/v). The method was linear over a concentration range of 1-100 ngml(-1). The lower limit of quantitation was 1 ngml(-1). The intra-day and inter-day relative standard deviation across three validation runs over the entire concentration range was < 11.5 %. The accuracy determined at three concentrations (8.0, 50.0 and 85.0 ngml(-1) OLZ) was within +/- 1.21 % in terms of relative errors.