383 resultados para Electrical Resistivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several concepts have been developed in the recent years for nanomaterial based integrated MEMS platform in order to accelerate the process of biological sample preparation followed by selective screening and identification of target molecules. In this context, there exist several challenges which need to be addressed in the process of electrical lysis of biological cells. These are due to (i) low resource settings while achieving maximal lysis (ii) high throughput of target molecules to be detected (iii) automated extraction and purification of relevant molecules such as DNA and protein from extremely small volume of sample (iv) requirement of fast, accurate and yet scalable methods (v) multifunctionality toward process monitoring and (vi) downward compatibility with already existing diagnostic protocols. This paper reports on the optimization of electrical lysis process based on various different nanocomposite coated electrodes placed in a microfluidic channel. The nanocomposites are synthesized using different nanomaterials like Zinc nanorod dispersion in polymer. The efficiency of electrical lysis with various different electrode coatings has been experimentally verified in terms of DNA concentration, amplification and protein yield. The influence of the coating thickness on the injection current densities has been analyzed. We further correlate experimentally the current density vs. voltage relationship with the extent of bacterial cell lysis. A coupled multiphysics based simulation model is used to predict the cell trajectories and lysis efficiencies under various electrode boundary conditions as estimated from experimental results. Detailed in-situ fluorescence imaging and spectroscopy studies are performed to validate various hypotheses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the different issues limiting the wider application of monolithic hydroxyapatite (HA) as an ideal bone replacement material is the lack of reasonably good electrical transport properties. The comprehensive electrical property characterization to evaluate the efficacy of processing parameters in achieving the desired combination of electroactive properties is considered as an important aspect in the development of HA-based bioactive material. In this perspective, the present work reports the temperature (RT-200 degrees C) and frequency (100 Hz-1 MHz) dependent dielectric properties and AC conductivity for a range of HA-CaTiO3 (HA-CT) composites, densified using both conventional pressureless sintering in air as well as spark plasma sintering in vacuum. Importantly, the AC conductivity of spark plasma sintered ceramics similar to upto 10(-5) (Omega cm)(-1)] are found to be considerably higher than the corresponding pressureless sintered ceramics similar to upto 10(-8) (Omega cm)(-1)]. Overall, the results indicate the processing route dependent functional properties of HA-CaTiO3 composites as well as related advantages of spark plasma sintering route. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical switching studies on amorphous Si15Te74Ge11 thin film devices show interesting changes in the switching behavior with changes in the input energy supplied; the input energy determines the extent of crystallization in the active volume, which is reflected in the value of SET resistances. This in turn, determines the trend exhibited by switching voltage (V-t) for different input conditions. The results obtained are analyzed on the basis of the amount of Joule heat generated, which determines the temperature of the active volume. Depending on the final temperature, devices are rendered either in the intermediate state with a resistance of 5*10(2) Omega or the ON state with a resistance of 5*10(1) Omega. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) thin films are deposited on unheated p-Si (100) and quartz substrates by employing DC reactive magnetron sputtering technique. The effect of post-deposition annealing in air at temperatures in the range 673-973 K on the structural, electrical, and dielectric properties of the films was investigated. The chemical composition of the TiO2 films was analyzed with X-ray photoelectron spectroscopy. The surface morphology of the films was studied by atomic force microscope. The optical band gap of the as-deposited film was 3.50 eV, and it increased to 3.55 eV with the increase in annealing temperature to 773 K. The films annealed at higher temperature of 973 K showed the optical band gap of 3.43 eV. Thin film capacitors were fabricated with the MOS configuration of Al/TiO2/p-Si. The leakage current density of the as-deposited films was 1.2 x 10(-6) A/cm(2), and it decreased to 5.9 x 10(-9) A/cm(2) with the increase in annealing temperature to 973 K. These films showed high dielectric constant value of 36. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous activated-carbons with a large surface-area have been the most common materials for electrical-double-layer capacitors (EDLCs). These carbons having a wide pore distribution ranges from micropores to macropores in conjunction with a random pore connection that facilitates the high specific-capacitance values. Pore distribution plays a central role in controlling the capacitance value of EDLCs, since electrolyte distribution inside the active material mainly depends on the pore distribution. This has a direct influence on the distribution of resistance and capacitance values within the electrode. As a result, preparation of electrodes remains a vital issue in realising high-performance EDLCs. Generally, carbon materials along with some binders are dispersed into a solvent and coated onto the current collectors. This study examines the role of binder solvents used for the carbon-ink preparation on the microstructure of the electrodes and the consequent performance of the EDLCs. It is observed that the physical properties of the binder solvent namely its dielectric constant, viscosity and boiling point have important role in determining the pore-size distribution as well as the microstructure of electrodes which influence their specific capacitance values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selenium doped thin films of GeTe alloys were investigated for their structural modifications by X-ray Diffraction, Fourier Transform Infrared Spectroscopy, X-ray photoelectron Spectroscopy (XPS) and Raman Spectroscopy. The band gap increase from 0.69 to 1.10 eV with increasing Se addition signifies the possibility of band gap tuning in the material. Disorder decreases, band widens and conductivity saturates about 0.20 at.% of Se addition. Structural changes are explained by the bond theory of solids. The as-deposited films are amorphous and 0.50 at.% Se alloy forms a homogeneous amorphous phase with a mixture of Ge-Se and Te-Se bonds. The XPS core level spectra and Raman spectra investigation clearly indicate the formation of Ge-Se, GeTe2 and Te-Se bonds with Se addition. Crystallization temperature is found to be increasing with Se and the 0.10 at.% Se alloy is found to have a higher resistance contrast compared to other Se concentration alloys. Up to 0.10 at.% of Se addition can enhance GeTe phase change memory properties. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the electrical transport behavior of carbon nanotubes (CNTs) upon exposure to organic analytes (namely ethanol, benzene, acetone and toluene). The resulting nonlinear current-voltage characteristics revealed a power law dependence of the differential conductivity on the applied bias voltage. Moreover, suppression of differential conductivity at zero bias is found to be dependent on different selective analytes. The power law exponent values have been monitored before, during and after exposure to the chemicals, which revealed a reversible change in the number of electron conducting channels. Therefore, the reduction in the number of conductive paths can be attributed to the interaction of the chemical analyte on the CNT surfaces, which causes a decrease in the differential conductivity of the CNT sample. These results demonstrate chemical selectivity of CNTs due to varying electronic interaction with different chemical analytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of CexZn1-xO thin films were deposited on glass substrates at 400 degrees C by nebulizer spray pyrolysis technique. Ce doping concentration (x) was varied from 0 to 10%, in steps of 2.5%. X-ray diffraction reveals that all the films have polycrystalline nature with hexagonal crystal structure and high preferential orientation along (002) plane. Optical parameters such as; transmittance, band gap energy, refractive index (n), extinction coefficient (k), complex dielectric constants (epsilon(r), epsilon(i)) and optical conductivity (sigma(r), sigma(i)) have been determined and discussed with respect to Ce concentration. All the films exhibit transmittance above 80% in the wavelength range from 330 to 2500 nm. Optical transmission measurements indicate the decrease of direct band gap energy from 3.26 to 3.12 eV with the increase of Ce concentration. Photoluminescence spectra show strong near band edge emission centered similar to 398 nm and green emission centered similar to 528 nm with excitation wavelength similar to 350 nm. High resolution scanning electron micrographs indicate the formation of vertical nano-rod like structures on the film surface with average diameter similar to 41 nm. Electrical properties of the Ce doped ZnO film have been studied using ac impedance spectroscopy in the frequency range from 100 Hz-1 MHz at different temperatures. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous Ge15Te85-xSix thin film switching devices (1 <= x <= 6) have been deposited in sandwich geometry, on glass substrates with aluminum electrodes, by flash evaporation technique. These devices exhibit memory type electrical switching, like bulk Ge15Te85-xSix glasses. However, unlike the bulk glasses, a-Ge15Te85-xSix films exhibit a smooth electrical switching behavior. The electrical switching fields of a-Ge15Te85-xSix thin film samples are also comparable with other chalcogenide samples used in memory applications. The switching fields of a-Ge15Te85-xSix films have been found to increase with increasing Si concentration. Also, the optical band gap of a-Ge15Te85-xSix films is found to increase with Si content. The observed results have been understood on the basis of increase in network connectivity and rigidity with Si addition. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nano ZnFe2O4 compound was prepared by eco-friendly hydrothermal method. The characterization of the sample for its structure, morphology and composition were done by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), dynamic light scattering, Fourier transform infrared spectroscopy, zeta surface profiler and UV-Visible spectroscopy studies. The PXRD measurement reveals that the compound shows spinel cubic phase belong Fd (3) over barm (227) space group. Morphology of the compound from SEM and surface profile shows nearly spherical agglomerated particles with well defined grains and grain boundaries. The material shows the semiconducting behavior with E-g of 2.3 eV at room temperature (RT). The variation in the magnetic ordering was observed for wide range of temperature. The compound behaves like a soft magnetic material with ferrimagnetic at various temperatures except at RT. Both magnetic and EPR studies supports the superparamagnetic behavior of the the sample. The DC conductivity, dielectric and AC conductivity behavior of the 1000 degrees C pellets sintered for 2 h shows good frequency dependent transport properties. The present study facilitate in selecting the suitable materials for the nanoelectronics and spintronic applications. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(methyl methacrylate) (PMMA) and CaCu3Ti4O12 (CCTO) composites were fabricated via melt mixing followed by hot pressing technique. These were characterized using X-ray diffraction, thermo gravimetric, thermo mechanical, differential scanning calorimetry, fourier transform infrared (FTIR) and Impedance analyser for their structural, thermal and dielectric properties. Composites were found to have better thermal stability than that of pure PMMA. However, there was no significant difference in the glass transition (T (g) ) temperature between the polymer and the composite. The appearance of additional vibrational frequencies in the range 400-600 cm(-1) in FTIR spectra indicated a possible interaction between PMMA and CCTO. The composite, with 38 vol% of CCTO (in PMMA), exhibited remarkably low dielectric loss at high frequencies and the low-frequency relaxation is attributed to the interfacial polarization/MWS effect. The origin of AC conductivity particularly in the high-frequency region was attributed to the electronic polarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary purpose of the present work was to illustrate whether cell proliferation can be enhanced on electroactive bioceramic composite, when the cells are cultured in the presence of external electrical stimulation. The two different aspects of the influence of electric field (E-field) application toward stimulating the growth/proliferation of bone/connective tissue cells in vitro, (a) intermittent delivery of extremely low strength pulsed electrical stimulation (0.5-4V/cm, 400s DC pulse) and (b) surface charge generated by electrical poling (10kV/cm) of hydroxyapatite (HA)-BaTiO3 piezobiocomposite have been demonstrated. The experimental results establish that the cell growth can be enhanced using the new culture protocol of the intermittent delivery of electrical pulses within a narrow range of stimulation parameters. The optimal E-field strength for enhanced cellular response for mouse fibroblast L929 and osteogenic cells is in the range of 0.5-1V/cm. The MTT 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay results suggested the increased viability of E-field treated cells over 7d in culture, implicating the positive impact of electrical pulses on proliferation behavior. The alizarin red assay results showed noticeable increase in Ca-deposition on the E-field treated samples in comparison to their untreated counterparts. The negatively charged surfaces of developed piezocomposite stimulated the cell growth in a statistically noticeable manner as compared with the uncharged or positively charged surfaces of similar composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plain epoxy resins or resin impregnated cellulose have found application as electrical insulation in power equipment. In the past, their performance was improved by the use of inorganic oxide fillers of microscopic dimensions. In the recent past nano-particle doped epoxy insulation came into use with a view to further enhance the dielectric properties. This paper reports dielectric investigations into epoxy nano-composites based on a class of metal oxides, Al2O3 and SiO2. In particular, consideration has been given to the partial discharge performance and electrical breakdown under different voltage profiles as a function of the volumetric composition of the nano-particles in epoxy resin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CaSiO3 nano-ceramic powder doped with Pr3+ has been prepared by solution combustion method. The powder Ca0.5Pr0.05SiO3 is investigated for its dielectric and electrical properties at room temperature to study the effect of doping. The sample is characterized by X-ray diffraction and infrared spectroscopy. The size of either of volume elements of CaSiO3:Pr3+ estimated from transmission electron microscopy is about 180-200 nm. The sample shows colossal dielectric response at room temperature. This colossal dielectric behaviour follows Debye-type relaxation and can be explained by Maxwell-Wagner (MW) polarization. However, analysis of impedance and electric modulus data using Cole-Cole plot shows that it deviates from ideal Debye behaviour resulting from the distribution of relaxation times. The distribution in the relaxation times may be attributed to existence of electrically heterogeneous grains, insulating grain boundary, and electrode contact regions. Doping, thus, results in substantial modifications in the dielectric and electrical properties of the nano-ceramic CaSiO3. (C) 2013 Elsevier Ltd. All rights reserved.