346 resultados para DIELECTRIC-RELAXATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strontium modified barium zirconium titanate with general formula Ba1-xSrxZr0.05Ti0.95O3 ceramics have been prepared by solid state and high energy ball milling technique. The X-ray diffraction and Rietveld refinement studies show that all the compositions have single phase symmetry. The composition BaZr0.05Ti0.95O3 shows orthorhombic symmetric with space group Amm2. The structure changes from orthorhombic to tetragonal with strontium doping up to x = 0.3 and with further addition, changes to cubic. The scanning electron micrographs show that the grain size decreases with increase in strontium content. The temperature dependent dielectric behavior shows three phase transition in the parent material which merges with an increase in Sr content The transition temperature and dielectric constant decreases with an increase in Sr concentration. The phase transition becomes more diffused with increment in doping concentration. The ferroelectric behavior of the ceramics is studied by the hysteresis loop. The optical behavior is studied by the UV-visible spectroscopy and found that the optical band gap increases with Sr concentration. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiesel run engines are gaining popularity since the last few years as a viable alternative to conventional petro-diesel based engines. In biodiesel exhaust the content of volatile organic compounds, oil mist, and mass of particulate matter is considerably lower. However, the concentration of oxides of nitrogen (NOx) is relatively higher. In this paper the biodiesel exhaust from a stationary engine is treated under controlled laboratory conditions for removal of NOx using dielectric barrier discharge plasma in cascade with adsorbents prepared from abundantly available industrial waste byproducts like red mud and copper slag. Results were compared with gamma-alumina, a commercial adsorbent. Two different dielectric barrier discharge (DBD) reactors were tested for their effectiveness under Repetitive pulses /AC energization. NOx removal as high as 80% was achieved with pulse energized reactors when cascaded with red mud as adsorbent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study systematically investigates the phenomenon of internal clamping in ferroelectric materials through the formation of glass-ceramic composites. Lead-free 0.715Bi(0.5)Na(0.5)TiO(3)-0.065BaTiO(3)-0.22SrTiO(3) (BNT-BT-ST) bulk ferroelectric ceramic was selected for the course of investigation. 3BaO - 3TiO(2) - B2O3 (BTBO) glass was then incorporated systematically to create sintered samples containing 0%, 2%, 4% and 6% glass (by weight). Upon glass induction features like remnant polarization, saturation polarization, hysteresis losses and coercive field could be varied as a function of glass content. Such effects were observed to benefit derived applications like enhanced energy storage density similar to 174 k J/m(3) to similar to 203 k J/m(3) and pyroelectric coefficient 5.7x10(-4) Cm-2K-1 to 6.8x10(-4) Cm-2K-1 by incorporation of 4% glass. Additionally, BNT-BT-ST depolarization temperature decreased from 457K to 431K by addition of 4% glass content. Glass incorporation could systematically increases diffuse phase transition and relaxor behavior temperature range from 70 K to 81K and 20K to 34 K, respectively when 6% and 4% glass content is added which indicates addition of glass provides better temperature stability. The most promising feature was observed to be that of dielectric response tuning. It can be also used to control (to an extent) the dielectric behavior of the host ceramic. Dielectric permittivity and losses decreased from 1278 to 705 and 0.109 to 0.107 for 6% glass, at room temperature. However this reduction in dielectric constant and loss increases pyroelectric figures of merit (FOMs) for high voltage responsivity (F-v) high detectivity (F-d) and energy harvesting (F-e) from 0.018 to 0.037 m(2)C(-1), 5.89 to 8.85 mu Pa-1/2 and 28.71 to 61.55 Jm(-3)K(-2), respectively for 4% added ceramic-glass at room temperature. Such findings can have huge implications in the field of tailoring ferroelectric response for application specific requirements. (C) 2015 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An organic supramolecular ternary salt (gallic acid:isoniazid:water; GINZH) examined earlier for its proton conducting characteristics is observed to display step-like dielectric behavior across the structural phase transition mediated by loss of water of hydration at 389 K. The presence of hydration in the crystal lattice along with proton mobility between acid base pairs controls the ``ferroelectric like'' behavior until the phase transition temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-kappa TiO2 thin films have been fabricated using cost effective sol-gel and spin-coating technique on p-Si (100) wafer. Plasma activation process was used for better adhesion between TiO2 films and Si. The influence of annealing temperature on the structure-electrical properties of titania films were investigated in detail. Both XRD and Raman studies indicate that the anatase phase crystallizes at 400 degrees C, retaining its structural integrity up to 1000 degrees C. The thickness of the deposited films did not vary significantly with the annealing temperature, although the refractive index and the RMS roughness enhanced considerably, accompanied by a decrease in porosity. For electrical measurements, the films were integrated in metal-oxide-semiconductor (MOS) structure. The electrical measurements evoke a temperature dependent dielectric constant with low leakage current density. The Capacitance-voltage (C-V) characteristics of the films annealed at 400 degrees C exhibited a high value of dielectric constant (similar to 34). Further, frequency dependent C-V measurements showed a huge dispersion in accumulation capacitance due to the presence of TiO2/Si interface states and dielectric polarization, was found to follow power law dependence on frequency (with exponent `s'=0.85). A low leakage current density of 3.6 x 10(-7) A/cm(2) at 1 V was observed for the films annealed at 600 degrees C. The results of structure-electrical properties suggest that the deposition of titania by wet chemical method is more attractive and cost-effective for production of high-kappa materials compared to other advanced deposition techniques such as sputtering, MBE, MOCVD and AID. The results also suggest that the high value of dielectric constant kappa obtained at low processing temperature expands its scope as a potential dielectric layer in MOS device technology. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally formed CdTe/CdS core/shell quantum dot (QD) structures in the presence of surface stabilizing agents have been synthesized by a hydrothermal method. Size and temperature dependent photoluminescence (PL) spectra have been investigated to understand the exciton-phonon interaction, and radiative and nonradiative relaxation of carriers in these QDs. The PL of these aqueous CdTe QDs (3.0-4.8 nm) has been studied in the temperature range 15-300 K. The strength of the exciton-LO-phonon coupling, as reflected in the Huang-Rhys parameter `S' is found to increase from 1.13 to 1.51 with the QD size varying from 4.8 to 3.0 nm. The PL linewidth (FWHM) increases with increase in temperature and is found to have a maximum in the case of QDs of 3.0 nm in size, where the exciton-acoustic phonon coupling coefficient is enhanced to 51 mu eV K-1, compared to the bulk value of 0.72 mu eV K-1. To understand the nonradiative processes, which affect the relaxation of carriers, the integrated PL intensity is observed as a function of temperature. The integrated PL intensity remains constant until 50 K for relatively large QDs (3.9-4.8 nm) beyond which a thermally activated process takes over. Below 150 K, a small activation energy, 45-19 meV, is found to be responsible for the quenching of the PL. Above 150 K, the thermal escape from the dot assisted by scattering with multiple longitudinal optical (LO) phonons is the main mechanism for the fast quenching of the PL. Besides this high temperature quenching, interestingly for relatively smaller size QDs (3.4-3.0 nm), the PL intensity enhances as the temperature increases up to 90-130 K, which is attributed to the emission of carriers from interface/trap states having an activation energy in the range of 6-13 meV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies were carried out to estimate the power input to Dielectric Barrier Discharge (DBD) reactors powered by AC high voltage in the context of their application in non-thermal plasma cleaning of exhaust gases. Power input to the reactors was determined both theoretically and experimentally. Four different reactor geometries energized with 50 Hz and 1.5 kHz AC excitation were considered for the study. The theoretically estimated power using Manley's equation was found to agree with the experimental results. Results show that the analytically computed capacitance, without including the electrode edge effects, gives sufficiently good results that are matching with the measured values. For complex geometries where analytical calculation of capacitance is often difficult, a novel method of estimating the reactor capacitance, and hence the power input to the reactor, was introduced in this paper. The predicted results were validated with experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress is inevitable during thin film growth. It is demonstrated here that the growth stress has a significant effect on the dielectric constant of high-k thin films. ZrO2 thin films were deposited on Ge by reactive direct current sputtering. Stress in these films was measured using in-situ curvature measurement tool. The growth stress was tuned from -2.8 to 0.1 GPa by controlling deposition rate. Dielectric permittivity of ZrO2 depends on temperature, phase, and stress. The correct combination of parameters-phase, texture, and stress-is shown to yield films with an equivalent oxide thickness of 8 angstrom. Growth stresses are shown to affect the dielectric constant both directly by affecting lattice parameter and indirectly through the effect on phase stability of ZrO2. (c) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the La3+ and Gd3+ co-doping on the structure, electric and magnetic properties of BiFeO3 (BFO) ceramics are investigated. For the compositions (x=0 and 0 <= y <= 0.15) in the perovskite structured LaxGdyBi1-xFeO3 system, a tiny residual phase of Bi2Fe4O9 is noticed. Such a secondary phase is suppressed with the incorporation of `La' content (x). The magnitude of dielectric constant (epsilon(r) increases progressively by increasing the `La' content from x=0 to 0.15 with a remarkable decrease of dielectric loss. For x=0.15, the system LaxGdyBi1-x(x+y)FeO3 exhibits highest remanent magnetization (M-r) of 0.18 emu/g and coercive magnetic field (H-c) of similar to 1 Tin the presence of external magnetic field of 9 T at 300 K. The origin of enhanced dielectric and magnetic properties of LaxGdyBil (x+y)Fe03 and the role of doping elements, La3+, Gd3+ has been discussed. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world has dominated by automation, wireless communication and various electronic equipments, which has led to the most undesirable offshoots like electromagnetic (EM) pollution. The rationale is environmental concern and the necessity to develop EM absorbing materials. This paper reviews the state of the art of designing polymer based nanocomposites containing nanoscopic particles with high electrical conductivity and complex microwave properties for enhanced EM attenuation. Given the brevity of this review article, herein we have summarized the high frequency millimetre wave absorbing properties of polymer nanocomposites consisting of various nanoparticles that either reflect or absorb microwave radiation like electrically conducting carbon nanotubes (CNTs) and graphene nanosheets (GNs), high dielectric constant ceramic nanoparticles that show relaxation loss in the microwave frequency and magnetic metal and ferrite nanoparticles that absorb microwave radiation through natural resonance, eddy current and hysteresis losses. Furthermore, we have stressed the necessity and impact of hybrid nanoparticles consisting of magnetic and dielectric nanoparticles along with conducting inclusions like CNT and GNs in this review. Electromagnetic interference (EMI) theory and necessary criterion for attenuation has been briefly discussed. The emphasis is made on various mechanisms towards EM attenuation controlled by these nanoparticles. Various structures developed using polymer nanocomposites like bulk, foam and layered structures and their effect on EM attenuation has been elaborately discussed. In addition, various covalent/non-covalent modifications on nanoparticles have been juxtaposed in context to EM attenuation. In addition, we have highlighted important facets and direction for enhancing the microwave attenuation. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to enhance the piezoelectric b-phase, PVDF was electrospun from DMF solution. The enhanced b-phase was discerned by comparing the electrospun fibers against the melt mixed samples. While both the processes resulted in phase transformation of a-to electroactive b-polymorph in PVDF, the fraction of b-phase was strongly dependent on the adopted process. Two different nanoscopic particles: carboxyl functionalized multiwall carbon nanotubes (CNTs) and silver (Ag) decorated CNTs were used to further enhance the piezoelectric coefficient in the electrospun fibers. Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (XRD) supports the development of piezoelectric b-phase in PVDF. It was concluded that electrospinning was the best technique for inducing the b-polymorph in PVDF. This was attributed to the high voltage electrostatic field that generates extensional forces on the polymer chains that aligns the dipoles in one direction. The ferroelectric and piezoelectric measurement on electrospun fibers were studied using piezo-response force microscope (PFM). The Ag-CNTs filled PVDF electrospun fibers showed the highest piezoelectric coefficient (d(33) = 54 pm V-1) in contrast to PVDF/CNT fibers (35 pm V-1) and neat PVDF (30 pm V-1). This study demonstrates that the piezoelectric coefficient can be enhanced significantly by electrospinning PVDF containing Ag decorated nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single scan longitudinal relaxation measurement experiments enable rapid estimation of the spin-lattice relaxation time (T-1) as the time series of spin relaxation is encoded spatially in the sample at different slices resulting in an order of magnitude saving in time. We consider here a single scan inversion recovery pulse sequence that incorporates a gradient echo sequence. The proposed pulse sequence provides spectra with significantly enhanced signal to noise ratio leading to an accurate estimation of T-1 values. The method is applicable for measuring a range of T-1 values, thus indicating the possibility of routine use of the method for several systems. A comparative study of different single scan methods currently available is presented, and the advantage of the proposed sequence is highlighted. The possibility of the use of the method for the study of cross-correlation effects for the case of fluorine in a single shot is also demonstrated. Copyright (C) 2015 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the first dielectric investigation of high-k yttrium copper titanate thin films, which were demonstrated to be very promising for nanoelectronics applications. The dielectric constant of these films is found to vary from 100 down to 24 (at 100 kHz) as a function of deposition conditions, namely oxygen pressure and film thickness. The physical origin of such variation was investigated in the framework of universal dielectric response and Cole-Cole relations and by means of voltage dependence studies of the dielectric constant. Surface-related effects and charge hopping polarization processes, strictly dependent on the film microstructure, are suggested to be mainly responsible for the observed dielectric response. In particular, the bulky behaviour of thick films deposited at lower oxygen pressure evolves towards a more complex and electrically heterogeneous structure when either the thickness decreases down to 50 nm or the films are grown under high oxygen pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single scan longitudinal relaxation measurement experiments enable rapid estimation of the spin-lattice relaxation time (T-1) as the time series of spin relaxation is encoded spatially in the sample at different slices resulting in an order of magnitude saving in time. We consider here a single scan inversion recovery pulse sequence that incorporates a gradient echo sequence. The proposed pulse sequence provides spectra with significantly enhanced signal to noise ratio leading to an accurate estimation of T-1 values. The method is applicable for measuring a range of T-1 values, thus indicating the possibility of routine use of the method for several systems. A comparative study of different single scan methods currently available is presented, and the advantage of the proposed sequence is highlighted. The possibility of the use of the method for the study of cross-correlation effects for the case of fluorine in a single shot is also demonstrated. Copyright (C) 2015 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the first dielectric investigation of high-k yttrium copper titanate thin films, which were demonstrated to be very promising for nanoelectronics applications. The dielectric constant of these films is found to vary from 100 down to 24 (at 100 kHz) as a function of deposition conditions, namely oxygen pressure and film thickness. The physical origin of such variation was investigated in the framework of universal dielectric response and Cole-Cole relations and by means of voltage dependence studies of the dielectric constant. Surface-related effects and charge hopping polarization processes, strictly dependent on the film microstructure, are suggested to be mainly responsible for the observed dielectric response. In particular, the bulky behaviour of thick films deposited at lower oxygen pressure evolves towards a more complex and electrically heterogeneous structure when either the thickness decreases down to 50 nm or the films are grown under high oxygen pressure.