347 resultados para DAMAGE EVOLUTION
Resumo:
Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K2Cr8O16, which exhibits a temperature-dependent (T-dependent) paramagnetic-to-ferromagnetic- metal transition at T-C = 180 K and transforms into a ferromagnetic insulator below T-MI = 95 K. We observe clear T-dependent dynamic valence (charge) fluctuations from above T-C to T-MI, which effectively get pinned to an average nominal valence of Cr+3.75 (Cr4+:Cr3+ states in a 3:1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0) similar to 3.5(k(B)T(MI)) similar to 35 meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U similar to 4 eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr) and the half-metallic ferromagnetism in the t(2g) up-spin band favor a low-energy Peierls metal-insulator transition.
Resumo:
Fatigue damage in concrete is characterized by the simultaneous presence of micro and macrocracics. The theory of fracture mechanics conveniently handles the propagation of macrocracks, whereas damage mechanics precisely describes the state of microcracking. This paper provides a platform to correlate fracture mechanics and damage mechanics theories through an energy equivalence within a thermodynamic framework by equating the energy dissipated according to each theory. Through this correlation, damage corresponding to a given crack length could be obtained, and alternatively a discrete crack could be transformed into an equivalent damage zone. The results are validated using available experimental data on concrete fatigue including stiffness degradation and acoustic emission. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In spite of intense research on ZnO over the past decade, the detailed investigation about the crystallographic texture of as obtained ZnO thin films/coatings, and its deviation with growth surface is scarce. We report a systematic study about the orientation distribution of nanostructured ZnO thin films fabricated by microwave irradiation with the variation of substrates and surfactants. The nanostructured films comprising of ZnO nanorods are grown on semiconductor substrates such as Si(100), Ge(100)], conducting substrates (ITO-coated glass, Cr coated Si), and polymer coated Si (PMMA/Si) to examine the respective development of crystallographic texture. The ZnO deposited on semiconductor substrates yieldsmixed texture, whereas c-axis oriented ZnO nanostructured films are obtained by conducting substrate, and PMMA coated Si substrates. Among all the surfactants, nanostructured film produced by using the lower molecular weight of polymeric surfactants (polyvinylpyrrolidone) shows a stronger (0002) texture, and that can be tuned to (10 - 10) by increasing the molecular weight of the surfactant. The strongest basal pole is achieved for the ZnO deposited on PMMA coated Si as substrate, and cetyl-trimethyl ammonium bromide as cationic surfactant. The texture analysis is carried out by X-ray pole figure analysis using the Schultz reflection method. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The occurrence of high-pressure mafic-ultramafic bodies within major shear zones is one of the indicators of paleo-subduction. In mafic granulites of the Andriamena complex (north-eastern Madagascar) we document unusual textures including garnet-clinopyroxene-quartz coronas that formed after the breakdown of orthopyroxene-plagioclase-ilmenite. Textural evidence and isochemical phase diagram calculations in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2 system indicate a pressure-temperature (P-T) evolution from an isothermal (780 degrees C) pressure up to c. 24 kbar to decompression and cooling. Such a P-T trajectory is typically attained in a subduction zone setting where a gabbroic/ultramafic complex is subducted and later exhumed to the present crustal level during oceanic closure and final continental collision. The present results suggest that the presence of such deeply subducted rocks of the Andriamena complex is related to formation of the Betsimisaraka suture. LA-ICPMS U-Pb zircon dating of pelitic gneisses from the Betsimisaraka suture yields low Th/U ratios and protolith ages ranging from 2535 to 2625 Ma. A granitic gneiss from the Alaotra complex yields a zircon crystallization age of ca. 818 Ma and Th/U ratios vary from 1.08 to 2.09. K-Ar dating of muscovite and biotite from biotite-kyanite-sillimanite gneiss and garnet-biotite gneiss yields age of 486 +/- 9 Ma and 459 +/- 9 Ma respectively. We have estimated regional crustal thicknesses in NE Madagascar using a flexural inversion technique, which indicates the presence of an anomalously thick crust (c. 43 km) beneath the Antananarivo block. This result is consistent with the present concept that subduction beneath the Antananarivo block resulted in a more competent and thicker crust. The textural data, thermodynamic model, and geophysical evidence together provide a new insight to the subduction history, crustal thickening and evolution of the high-pressure Andriamena complex and its link to the terminal formation of the Betsimisaraka suture in north-eastern Madagascar. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we consider applying derived knowledge base regarding the sensitivity and specificity of damage(s) to be detected by an SHM system being designed and qualified. These efforts are necessary toward developing capabilities in SHM system to classify reliably various probable damages through sequence of monitoring, i.e., damage precursor identification, detection of damage and monitoring its progression. We consider the particular problem of visual and ultrasonic NDE based SHM system design requirements, where the damage detection sensitivity and specificity data definitions for a class of structural components are established. Methodologies for SHM system specification creation are discussed in details. Examples are shown to illustrate how the physics of damage detection scheme limits particular damage detection sensitivity and specificity and further how these information can be used in algorithms to combine various different NDE schemes in an SHM system to enhance efficiency and effectiveness. Statistical and data driven models to determine the sensitivity and probability of damage detection (POD) has been demonstrated for plate with varying one-sided line crack using optical and ultrasonic based inspection techniques.
Resumo:
In the current state of the art, it remains an open problem to detect damage with partial ultrasonic scan data and with measurements at coarser spatial scale when the location of damage is not known. In the present paper, a recent development of finite element based model reduction scheme in frequency domain that employs master degrees of freedom covering the surface scan region of interests is reported in context of non-contact ultrasonic guided wave based inspection. The surface scan region of interest is grouped into master and slave degrees of freedom. A finite element wise damage factor is derived which represents damage state over distributed areas or sharp condition of inter-element boundaries (for crack). Laser Doppler Vibrometer (LDV) scan data obtained from plate type structure with inaccessible surface line crack are considered along with the developed reduced order damage model to analyze the extent of scan data dimensional reduction. The proposed technique has useful application in problems where non-contact monitoring of complex structural parts are extremely important and at the same time LDV scan has to be done on accessible surfaces only.
Resumo:
Electrically conducting, continuous films of different phases of palladium selenides are synthesized by the thermolysis of single source molecular precursors. The films are found to be adherent on flat substrates such as glass, indium tin oxide and glassy carbon and are stable under electrochemical conditions. They are electrocatalytically active and in particular, for hydrogen evolution reaction. Catalytic activities with low Tafel slopes of 50-60 mV per decade are observed.
Resumo:
Ropalidia marginata is a primitively eusocial wasp widely distributed in peninsular India. Although solitary females found a small proportion of nests, the vast majority of new nests are founded by small groups of females. In suchmultiple foundress nests, a single dominant female functions as the queen and lays eggs, while the rest function as sterile workers and care for the queen's brood. Previous attempts to understand the evolution of social behaviour and altruism in this species have employed inclusive fitness theory (kin selection) as a guiding framework. Although inclusive fitness theory is quite successful in explaining the high propensity of the wasps to found nests in groups, several features of their social organization suggest that forces other than kin selection may also have played a significant role in the evolution of this species. These features include lowering of genetic relatedness owing to polyandry and serial polygyny, nest foundation by unrelated individuals, acceptance of young non-nest-mates, a combination of well-developed nest-mate recognition and lack of intra-colony kin recognition, a combination of meek and docile queens and a decentralized self-organized work force, long reproductive queues with cryptic heir designates and conflict-free queen succession, all resulting in extreme intra-colony cooperation and inter-colony conflict.
Resumo:
The effect of multiple phases on the evolution of texture during cold rolling and annealing of a copper-iron multilayer, fabricated by accumulative roll bonding, has been studied. The presence of an iron layer affects the deformation texture of the copper layer only at very large strains. On the other hand, a strong effect of copper on iron is observed at both small and large strains. At smaller strains, the larger deformation carried by the copper suppresses the texture development in the iron, whereas, at higher strains, selection of specific orientation relationship at the interface influences the texture of the iron layer. Shear banding and continuous dynamic recrystallization were found to influence the evolution of texture in the copper layer. The influence of large plastic deformation on the recrystallization behavior of copper is demonstrated with the suppression of typical fcc annealing texture components, described as constrained recrystallization. Evolution of typical annealing texture component is suppressed because of the multilayer microstructure. The plane of the interface formed during deformation is determined by a combination of the rolling texture of individual phases, constrained annealing, and the tendency to form a low-energy interface between the two phases during annealing.
Resumo:
Tensile experiments on cold-drawn Ni microwires with diameters from similar to 115 to 50 gm revealed high strengths, with significant strength variability for finer wires with diameters less than similar to 50 gm. The wires showed pronounced necking at fracture. The coarser wires with diameters > 50 mu m exhibited conventional ductile cup-cone fracture, with dimples in the central zone and peripheral shear lips, whereas finer wires failed by shear with knife or chisel-edge fractures. Shear bands were observed in all samples. Further, through- section microscopy of selected fractured samples revealed that the shear bands did not go across the enitre specimen for the coarser wires. The shear bands led to grain fragmention, with a reduction in grain aspect ratio as well as rotations away from the initial < 111 > orientations. The strength data were analysed based on a Weibull approach. The data could be rationalized in terms of failure from volume defects in coarser wires, with a high Weibull modulus, and from surface defects in finer wires, with a low Weibull modulus and greater variability. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Nano-crystals of LiNbxTa1 (-) O-x(3) were evolved by subjecting melt-quenched 1.5Li(2)O-2B(2)O(3)-xNb(2)O(5)-(1 - x)Ta2O5 glasses (where x = 0, 0.25, 0.5, 0.75 and 1.00) to a controlled 3-h isothermal heat treatment between 530 and 560 degrees C. Detailed X-ray diffraction and Raman spectral studies confirmed the formation of nano-crystalline LiNbxTa1 (-) O-x(3) along with a minor phase of ferroelectric and non-linear optic Li2B4O7. The sizes of the nanocrystals evolved in the glass were in the range of 19-37 nm for x = 0-0.75 and 23-45 nm for x = 1.00. Electron microscopic studies confirmed a transformation of the morphology of the nano-crystallites from dendritic star-shaped spherulites for x = 0 to rod-shaped structures for x = 1.00 brought about by a coalescence of crystallites. Broad Maker-fringe patterns (recorded at 532 nm) were obtained by subjecting the heat-treated glass plates to 1064 nm fundamental radiation. However, an effective second order non-linear optic coefficient, d(eff), of 0.45 pm/V, which is nearly 1.2 times the d(36) of KDP single crystal, was obtained for a 560 degrees C/3 h heat-treated glass of the representative composition x = 0.50 comprising 37 nm sized crystallites. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We have carried out dielectric and transport measurements in NdFe1-xMnxO3 (0 <= x <= 1) series of compounds and studied the variation of activation energy due to a change in Mn concentration. Despite similar ionic radii in Mn3+ and Fe3+, large variation is observed in the lattice parameters and a crossover from dynamic to static Jahn-Teller distortion is discernible. The Fe/Mn-O-Fe/Mn bond angle on the ab plane shows an anomalous change with doping. With an increase in the Mn content, the bond angle decreases until x = 0.6; beyond this, it starts rising until x = 0.8 and again falls after that. A similar trend is observed in activation energies estimated from both transport and dielectric relaxation by assuming a small polaron hopping (SPH) model. Impedance spectroscopy measurements delineate grain and grain boundary contributions separately both of which follow the SPH model. Frequency variation of the dielectric constant is in agreement with the modified Debye law from which relaxation dispersion is estimated.
Resumo:
Nano-crystals of LiNbxTa1 (-) O-x(3) were evolved by subjecting melt-quenched 1.5Li(2)O-2B(2)O(3)-xNb(2)O(5)-(1 - x)Ta2O5 glasses (where x = 0, 0.25, 0.5, 0.75 and 1.00) to a controlled 3-h isothermal heat treatment between 530 and 560 degrees C. Detailed X-ray diffraction and Raman spectral studies confirmed the formation of nano-crystalline LiNbxTa1 (-) O-x(3) along with a minor phase of ferroelectric and non-linear optic Li2B4O7. The sizes of the nanocrystals evolved in the glass were in the range of 19-37 nm for x = 0-0.75 and 23-45 nm for x = 1.00. Electron microscopic studies confirmed a transformation of the morphology of the nano-crystallites from dendritic star-shaped spherulites for x = 0 to rod-shaped structures for x = 1.00 brought about by a coalescence of crystallites. Broad Maker-fringe patterns (recorded at 532 nm) were obtained by subjecting the heat-treated glass plates to 1064 nm fundamental radiation. However, an effective second order non-linear optic coefficient, d(eff), of 0.45 pm/V, which is nearly 1.2 times the d(36) of KDP single crystal, was obtained for a 560 degrees C/3 h heat-treated glass of the representative composition x = 0.50 comprising 37 nm sized crystallites. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Tb0.3Dy0.7Fe1.95 alloy was directionally solidified by using a modified Bridgman technique at a wide range of growth rates of 5 to 100 cm/h. The directionally grown samples exhibited plane front solidification morphology up to a growth rate of 90 cm/h. Typical island banding feature was observed closer to the chilled end, which eventually gave rise to irregular peritectic coupled growth (PCG). The PCG gained prominence with an increase in the growth rate. The texture study revealed formation of strong aOE (c) 311 > texture in a lower growth rate regime, aOE (c) 110 > and ``rotated aOE (c) 110 > aEuroe in an intermediate growth regime, and aOE (c) 112 > in a higher growth rate regime. In-depth analysis of the atomic configuration of a solid-liquid interface revealed that the growth texture is influenced by the kinetics of atomic attachment to the solid-liquid interface, which is intimately related to a planar packing fraction and an atomic stacking sequence of the interfacial plane. The mechanism proposed in this article is novel and will be useful in addressing the orientation selection mechanism of topologically closed packed intermetallic systems. The samples grown at a higher growth rate exhibit larger magnetostriction (lambda) and d lambda/dH owing to the absence of pro-peritectic (Tb,Dy)Fe-3 and formation of aOE (c) 112 > texture, which lies closer to the easy magnetization direction (EMD).
Resumo:
The Southern Granulite Terrain in India is a collage of crustal blocks ranging in age from Archean to Neoproterozoic. This study investigate the tectonic evolution of one of the northernmost block- the Biligiri Block (BRB) through a multidisciplinary approach involving field investigation, petrographic studies, LA-ICPMS zircon U-Pb geochronology, Hf isotopic analyses, metamorphic P-T phase diagram computations, and crustal thickness modeling. The garnet bearing quartzofeldspathic gneiss from the central BRB preserve Mesoarchean magmatic zircons with ages between 3207 and 2806 Ma and positive epsilon Hf value (+2.7) which possibly indicates vestiges of a Mesoarchean primitive continental crust. The occurrence of quartzite-iron formation intercalation as well as ultramafic lenses along the western boundary of the BRB is interpreted to indicate that the Kollegal structural lineament is a possible paleo-suture. Phase diagram computation of a metagabbro from the southwestern periphery of the Kollegal suture zone reveals high-pressure (similar to 18.5 kbar) and medium-temperature (similar to 840 degrees C) metamorphism, likely during eastward subduction of the Western Dharwar oceanic crust beneath the Mesoarchean BRB. In the model presented here, slab subduction, melting and underplating processes generated arc magmatism and subsequent charnockitization within the BRB between ca. 2650 Ma and ca. 2498 Ma. These results thus reveal Meso- to Neoarchean tectonic evolution of the BRB. The spatial variation of crustal thickness, derived from flexure inversion technique, provides additional constraints on the tectonic linkage of the BRB with its surrounding terrains. In conjunction with published data, the Moyar and the Kollegal suture zones are considered to mark the trace of ocean closure along which the Nilgiri and Biligiri Rangan Blocks accreted on to the Western Dharwar Craton. (C) 2016 Elsevier B.V. All rights reserved.