344 resultados para Combustion engineering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline tin oxide (SnO2) material of different particle size was synthesized using gel combustion method by varying oxidizer (HNO3) and keeping fuel as a constant. The prepared samples were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscope (EDAX). The effect of oxidizer in the gel combustion method was investigated by inspecting the particle size of nano SnO2 powder. The particle size was found to be increases with the increase of oxidizer from 8 to 12 moles. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the particle size in the range of 17 to 31 nm which was calculated by Scherer's formula. The particles and temperature dependence of direct (DC) electrical conductivity of SnO2 nanomaterial was studied using Keithley source meter. The DC electrical conductivity of SnO2 nanomaterial increases with the temperature from 80 to 300K and decrease with the particle size at constant temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen-air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen-air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (S-d) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in S-d is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to investigate the possibility to construct tissue-engineered bone repair scaffolds with pore size distributions using rapid prototyping techniques. Design/methodology/approach - The fabrication of porous scaffolds with complex porous architectures represents a major challenge in tissue engineering and the design aspects to mimic complex pore shape as well as spatial distribution of pore sizes of natural hard tissue remain unexplored. In this context, this work aims to evaluate the three-dimensional printing process to study its potential for scaffold fabrication as well as some innovative design of homogeneously porous or gradient porous scaffolds is described and such design has wider implication in the field of bone tissue engineering. Findings - The present work discusses biomedically relevant various design strategies with spatial/radial gradient in pore sizes as well as with different pore sizes and with different pore geometries. Originality/value - One of the important implications of the proposed novel design scheme would be the development of porous bioactive/biodegradable composites with gradient pore size, porosity, composition and with spatially distributed biochemical stimuli so that stem cells loaded into scaffolds would develop into complex tissues such as those at the bone-cartilage interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present experimental work reports the first observations of primary and secondary transitions in the time-averaged flame topology in a non-premixed swirling flame as the geometric swirl number S-G (a non dimensional number used to quantify the intensity of imparted swirl) is varied from a magnitude of zero till flame blowout. First observations of two transition types viz. primary and secondary transitions are reported. The primary transition represents a transformation from yellow straight jet flame (at S-G = 0) to lifted flame with blue base and finally to swirling seated (burner attached) yellow flame. Time-averaged streamline plot obtained from 2D PIV in mid-longitudinal plane shows a recirculation zone (RZ) at the immediate vicinity of burner exit. The lifted flame is stabilized along the vortex core of this RZ. Further, when S-G similar to 1.4-3, the first occurrence of vortex breakdown (VB) induced internal recirculation zone (IRZ) is witnessed. The flame now stabilizes at the upstream stagnation point of the VB-IRZ, which is attached to the burner lip. The secondary transition represents a transformation from a swirling seated flame to swirling flame with a conical tailpiece and finally to a highly-swirled near blowout oxidizer-rich flame. This transition is understood to be the result of transition in vortex breakdown modes of the swirling flow field from dual-ring VB bubble to central toroidal recirculation zone (CTRZ). The physics of transition is described on the basis of modified Rossby number (Ro(m)). Finally, when the swirl intensity is very high i.e. SG similar to 10, the flame blows out due to excessive straining and due to entrainment of large amount of oxidizer due to partial premixing. The present investigation involving changes in flame topology is immensely important because any change in global flame structure causes oscillatory heat release that can couple with dynamic pressure and velocity fluctuations leading to unsteady combustion. In this light, understanding mechanisms of flame stabilization is essential to tackle the problem of thermo-acoustic instability. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (<70% by volume) is shown by using an appropriate time scale obtained from force balance. Continuous caving leads to the formation of a liquid membrane-type structure which undergoes radial extension due to inertia gained during the precursor phase. The membrane subsequently closes at the rim and the kinetic energy leads to ligament formation and growth. Subsequent ligament breakup is primarily Rayleigh-Plateau type. The breakup mode shifts to diffusional entrapment-induced boiling with an increase in concentration of the volatile component (benzene >70% by volume). The findings are portable to any similar bicomponent systems with differential volatility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a plausible dual-site mechanism and microkinetic model for CO oxidation over palladium-substituted ceria incorporating the theoretical oxygen storage capacity of different-catalysts into the kinetic model. A rate expression without prior assumption of rate-determining steps has been developed for the proposed microkinetic model using reaction route analysis. Experiments were conducted using various percentages of palladium in ceria that were synthesized by solution combustion. Obtained catalysts were characterized by X-ray diffraction, X-ray photoelectron spectra, and Brunauer-Emmett-Teller surface area measurements. A detailed mechanism was, developed, and the kinetic parameters and rate expression were validated with the conversion data obtained in the presence of the catalysts. Furthermore, a reduced rate expression based on rate-determining step and most abundant reactive intermediate approximation was obtained and tested against the original rate expression for different experimental conditions. From the results obtained it was concluded that the simulated rate predictions matched the experimental trend with reasonable accuracy, validating the kinetic parameters proposed it this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoacoustic instability in a lean premixed combustor is a major impediment towards reliable operation of gas turbine engines for both aerospace and land based applications. In this communication, we investigate the following concept: in a laboratory combustor, could the otherwise static swirler be actuated to a rotary motion, such that the higher intensity turbulence and higher swirl number generated in the flame stabilization region might alter the flame position, structure and thereby assist in mitigating thermoacoustic instabilities? Results obtained using microphone and high speed imaging, show prominent reductions in the amplitudes of the first mode of the thermoacoustically unstable flame, with increased rotation rate of the swirler. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A synthetic strategy is described for the co-crystallization of four-and five-component molecular crystals, based on the fact that if any particular chemical constituent of a lower cocrystal is found in two different structural environments, these differences may be exploited to increase the number of components in the solid. 2-Methylresorcinol and tetramethylpyrazine are basic template molecules that allow for further supramolecular homologation. Ten stoichiometric quaternary cocrystals and one quintinary cocrystal with some solid solution character are reported. Cocrystals that do not lend themselves to such homologation are termed synthetic dead ends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combustion technique is used to study the synthesis of carbon nano tubes from waste plastic as a precursor and Ni/Mo/MgO as a catalyst. The catalytic activity of three components Ni, Mo, MgO is measured in terms of amount of carbon product obtained. Different proportions of metal ions are optimized using mixture experiment in Design expert software. D-optimal design technique is adopted due to nonsimplex region and presence of constraints in the mixture experiment. The activity of the components is observed to be interdependent and the component Ni is found to be more effective. The catalyst containing Ni0.8Mo0.1MgO0.1 yields more carbon product. The structure of catalyst and CNTs are studied by using SEM, XRD, and Raman spectroscopy. SEM analysis shows the formation of longer CNTs with average diameter of 40-50 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toward preparing strong multi-biofunctional materials, poly(ethylenimine) (PEI) conjugated graphene oxide (GO_PEI) was synthesized using poly(acrylic acid) (PAA) as a spacer and incorporated in poly( e-caprolactone) (PCL) at different fractions. GO_PEI significantly promoted the proliferation and formation of focal adhesions in human mesenchymal stem cells (hMSCs) on PCL. GO_PEI was highly potent in inducing stem cell osteogenesis leading to near doubling of alkaline phosphatase expression and mineralization over neat PCL with 5% filler content and was approximate to 50% better than GO. Remarkably, 5% GO_ PEI was as potent as soluble osteoinductive factors. Increased adsorption of osteogenic factors due to the amine and oxygen containing functional groups on GO_ PEI augment stem cell differentiation. GO_ PEI was also highly efficient in imparting bactericidal activity with 85% reduction in counts of E. coli colonies compared to neat PCL at 5% filler content and was more than twice as efficient as GO. This may be attributed to the synergistic effect of the sharp edges of the particles along with the presence of the different chemical moieties. Thus, GO_ PEI based polymer composites can be utilized to prepare bioactive resorbable biomaterials as an alternative to using labile biomolecules for fabricating orthopedic devices for fracture fixation and tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combustion synthesized (CS) cobalt catalysts deposited over two supports, alumina and silica doped alumina (SDA), were characterized and tested for its Fischer-Tropsch (FT) activity. The properties of CS catalysts were compared to catalysts synthesized by conventional impregnation method (IWI). The CS catalysts resulted in 40-70% increase in the yield of C6+ hydrocarbons compared to MI catalysts. The FT activity for CS catalysts showed formation of long chain hydrocarbon waxes (C24+) compared to the formation of middle distillates (C-10-C-20) for IWI synthesized catalysts, indicating higher hydrocarbon chain growth probability for CS catalysts. This is ascribed to the smaller crystallite sizes, increased degree of cobalt reduction and consequentially, a higher number of active metal sites, exposed over the catalyst surface. Additionally, 12-13% increase in the overall C6+ hydrocarbon yield is realized for SDA-CS catalysts, compared to Al2O3-CS catalysts. The improved performance of CS-SDA catalysts is attributed to 48% increase in cobalt dispersion compared to Al2O3 supported CS catalysts, which is again caused by the decrease in the cobalt -support interaction for SDA supports. The metal support interactions were analyzed using XPS and H-2 TPR-TPD experiments. Combustion method produced catalysts with smaller crystallite size (17-18 nm), higher degree of reduction (similar to 92%) and higher metal dispersion (16.1%) compared to the IWI method. Despite its enhanced properties, the CS catalysts require prominently higher reduction temperatures (similar to 1100-1200 K). The hydrocarbon product analysis for Al2O3 supported catalyst showed higher paraffin wax concentrations compared to SDA supported catalysts, due to the lower surface basicity of Al2O3. This work reveals the impact of the CS catalysts and the nature of support on FT activity and hydrocarbon product spectrum. (C) 2016 Elsevier Ltd. All rights reserved.