416 resultados para Aluminium base alloys
Resumo:
In recent times, (thio)urea derivatives have become synonymous with hydrogen bonding owing to their extensive applicability as small molecule organocatalysts. In this paper, another activation mode by thiourea derivatives, namely via Lewis base catalysis, is disclosed for the NBS-mediated oxidation of alcohols. The mild reaction conditions employed here is suitable for chemoselective oxidation of secondary alcohol in the presence of primary alcohol.
Resumo:
In the present investigation, commercially pure Al has been joined with 304 stainless steel (SS) by friction stir welding. The assembly finds widespread application in the field of cryogenics, nuclear, structural industries and domestic appliances. Microstructural characterisation was carried out using scanning and transmission electron microscopes. It has been found that diffusion of Fe, Cr and Ni is substantial within Al; however, diffusion of Al within 304SS is limited. Owing to interdiffusion of chemical species across the bondline, discrete islands of Fe3Al intermetallic form within the reaction zone. The rubbing action of tool over the butting edge of 304SS removed fine particles from 304SS, which were embedded in the stirring zone of Al matrix. Subsequently, austenite underwent phase transformation to ferrite due to large strain within this grain. Fracture path mainly moves through stirring zone of Al alloy under tensile loading; however, in some places, presence of Fe3Al compound has been also found.
Resumo:
The present study describes the course of microstructure evolution during accumulative roll bonding (ARB) of dissimilar aluminum alloys AA2219 and AA5086. The two alloys were sandwiched as alternate layers and rolled at 300 degrees C up to 8 passes with 50% height reduction per pass. A strong bonding between successive layers accompanied by substantial grain refinement (similar to 200-300 nm) is achieved after 8 passes of ARB. The processing schedule has successfully maintained the iso-strain condition up to 6 cycles between the two alloys. Afterwards, the fracture and fragmentation of AA5086 layers dominate the microstructure evolution. Mechanical properties of the 8 pass ARB processed material were evaluated in comparison to the two starting alloy sheets via room temperature tensile tests along the rolling direction. The strength of the 8 pass ARB processed material lies between that of the two starting alloys while the ductility decreases after ARB than that of the two constituent starting alloys. These differences in mechanical behavior have been attributed to the microstructural aspects of the individual layer and the fragmentation process. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis of THF coordinated aluminium nanoparticles by the solvated metal atom dispersion (SMAD) method is described. These colloids are not stable with respect to precipitation of aluminium nanoparticles. The precipitated aluminium nanopowder is highly pyrophoric. Highly monodisperse colloidal aluminium nanoparticles (3.1 +/- 0.6 nm) stabilized by a capping agent, hexadecyl amine (HDA), have also been prepared by the SMAD method. They are stable towards precipitation of particles for more than a week. The Al-HDA nanoparticles are not as pyrophoric as the Al-THF samples. Particles synthesized in this manner were characterized by high-resolution electron microscopy and powder X-ray diffraction. Annealing of the Al-HDA nanoparticles resulted in carbonization of the capping agent on the surface of the particles which imparts air stability to them. Carbonization of the capping agent was established using Raman spectroscopy and TEM. The annealed aluminium nanoparticles were found to be stable even upon their exposure to air for over a month which was evident from the powder XRD, TGA/DSC, and TEM studies. The successful passivation was further confirmed with the determination of high active aluminium content (95 wt%) upon exposure and storage under air.
Resumo:
The effect of base dissipation on the granular flow down an inclined plane is examined by altering the coefficient of restitution between the moving and base particles in discrete element (DE) simulations. The interaction laws between two moving particles are kept fixed, and the coefficient of restitution (damping constant in the DE simulations) between the base and moving particles are altered to reduce dissipation, and inject energy from the base. The energy injection does result in an increase in the strain rate by up to an order of magnitude, and the temperature by up to two orders of magnitude at the base. However, the volume fraction, strain rate and temperature profiles in the bulk (above about 15 particle diameters from the base) are altered very little by the energy injection at the base. We also examine the variation of h(stop), the minimum height at the cessation of flow, with energy injection from the base. It is found that at a fixed angle of inclination, h(stop) decreases as the energy dissipation at the base decreases.
Resumo:
We report the results of an experimental and numerical study conducted on a closed-cell aluminium foam that was subjected to uniaxial compression with lateral constraint. X-ray computed tomography was utilized to gain access into the three-dimensional (3-D) structure of the foam and some aspects of the deformation mechanisms. A series of advanced 3-D image analyses are conducted on the 3-D images aimed at characterizing the strain localization regions. We identify the morphological/geometrical features that are responsible for the collapse of the cells and the strain localization. A novel mathematical approach based on a Minkowski tensor analysis along with the mean intercept length technique were utilized to search for signatures of anisotropy across the foam sample and its evolution as a function of loading. Our results show that regions with higher degrees of anisotropy in the undeformed foam have a tendency to initiate the onset of cell collapse. Furthermore, we show that strain hardening occurs predominantly in regions with large cells and high anisotropy. We combine the finite element method with the tomographic images to simulate the mechanical response of the foam. We predict further deformation in regions where the foam is already deformed. Crown Copyright (C) 2012 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.
Resumo:
Particle simulations based on the discrete element method are used to examine the effect of base roughness on the granular flow down an inclined plane. The base is composed of a random configuration of fixed particles, and the base roughness is decreased by decreasing the ratio of diameters of the base and moving particles. A discontinuous transition from a disordered to an ordered flow state is observed when the ratio of diameters of base and moving particles is decreased below a critical value. The ordered flowing state consists of hexagonally close packed layers of particles sliding over each other. The ordered state is denser (higher volume fraction) and has a lower coordination number than the disordered state, and there are discontinuous changes in both the volume fraction and the coordination number at transition. The Bagnold law, which states that the stress is proportional to the square of the strain rate, is valid in both states. However, the Bagnold coefficients in the ordered flowing state are lower, by more than two orders of magnitude, in comparison to those of the disordered state. The critical ratio of base and moving particle diameters is independent of the angle of inclination, and varies very little when the height of the flowing layer is doubled from about 35 to about 70 particle diameters. While flow in the disordered state ceases when the angle of inclination decreases below 20 degrees, there is flow in the ordered state at lower angles of inclination upto 14 degrees. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4710543]
Resumo:
Compositional dependent investigations of the bulk GeTe chalcogenides alloys added with different selenium concentrations are carried out by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), electron probe micro-analyzer (EPMA) and differential scanning calorimetry (DSC). The measurements reveal that GeTe crystals are predominant in alloys up to 0.20 at.% of Se content indicating interstitial occupancy of Se in the Ge vacancies. Raman modes in the GeTe alloys changes to GeSe modes with the addition of Se. Amorphousness in the alloy increases with increase of Se and 0.50 at.% Se alloy forms a homogeneous amorphous phase with a mixture of Ge-Se and Te-Se bonds. Structural changes are explained with the help of bond theory of solids. Crystallization temperature is found to be increasing with increase of Se, which will enable the amorphous stability. For the optimum 0.50 at.% Se alloy, the melting temperature has reduced which will reduce the RESET current requirement for the phase change memory applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Bulk samples of S40Se60-xSbx (with x=10, 20, 30, 40 at. %) were prepared from high purity S, Se and Sb by melt quenching method. XRD studies revealed that all the samples have poly-crystalline phase. The variation in optical properties with composition has been investigated by XPS and Raman spectroscopy. The intensity of XPS core level spectra changes with addition of Sb clearly interprets the optical properties change due to compositional variation. The Raman shift and new peak formation in these samples clearly shows the structural modifications due to Sb addition.
Resumo:
The effect of Tb/Dy ratio on the structural and magnetic properties of (Tb,Dy)Fe-2 class of alloys has been investigated using nine alloys of TbxDy1-xFe1.95 (x = 0-1) covering the entire range. Our results indicate that the three phases viz. (Tb,Dy)Fe-2 (major phase), (Tb,Dy)Fe-3 and(Tb,Dy)-solid solution (minor phases) coexist in all the alloys. The volume fraction of pro-peritectic (Tb,Dy)Fe-3 phase however, has a minimum at x = 0.4 and a maximum at x = 0.6 compositions. The volume fraction of this phase decreases upon heat treatment at 850 degrees C and 1000 degrees C. A Widmanstatten type precipitate of (Tb,Dy)Fe-3 was observed for Dy-rich compositions (0 <= x <= 0.5). The microstructural investigations indicate that the ternary phase equilibria of Tb-Dy-Fe are sensitive to Tb/Dy ratio including the expansion of (Tb,Dy)Fe-2 phase field which is in contrast to the pseudo-binary assumption that is followed in available literature to date. The lattice parameter, Curie temperature and coercivity are found to increase with Tb addition. Split of (440) peak of (Tb,Dy)Fe-2 observed in x >= 0.3 alloys indicate, a spin reorientation transition from 100] to 111] occurs with Tb addition. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
In the present work, the evolution of microstructure during solidification of A356 alloy under stirring is performed experimentally in a high temperature concentric viscometer. The stirring during solidification results a semisolid slurry in the annular space between the cylinders. This slurry is removed periodically during processing using a vacuum removal quartz tube and quenched in water for micrograph analysis. From the micrograph analysis, the shape, stacking arrangement and corresponding microstructural evolution of the suspended primary particles in the slurry are studied. The work also predicts the fraction of solid present in the extracted slurry. Finally, the effect of microstructure and the solid-fraction on the slurry viscosity is presented.
Resumo:
Ligand-induced stabilization of the G-quadruplex DNA structure derived from the single-stranded 3'-overhang of the telomeric DNA is an attractive strategy for the inhibition of the telomerase activity. The agents that can induce/stabilize a DNA sequence into a G-quadruplex structure are therefore potential anticancer drugs. Herein we present the first report of the interactions of two novel bisbenzimidazoles (TBBz1 and TBBz2) based on Troger's base skeleton with the G-quadruplex DNA (G4DNA). These Troger's base molecules stabilize the G4DNA derived from a human telomeric sequence. Evidence of their strong interaction with the G4DNA has been obtained from CD spectroscopy, thermal denaturation, and UV-vis titration studies. These ligands also possess significantly higher affinity toward the G4DNA over the duplex DNA. The above results obtained are in excellent agreement with the biological activity, measured in vitro using a modified TRAP assay. Furthermore, the ligands are selectively more cytotoxic toward the cancerous cells than the corresponding noncancerous cells. Computational studies suggested that the adaptive scaffold might allow these ligands to occupy not only the G-quartet planes but also the grooves of the G4DNA.
Resumo:
Hot deformation behavior of a hypoeutectic Ti-6Al-4V-0.1B alloy in (alpha + beta) phase field is investigated in the present study with special reference to flow response, kinetics and microstructural evolution. For a comparison, the base alloy Ti-6Al-4V was also studied under identical conditions. Dynamic recovery of alpha phase occurs at low temperatures while softening due to globularization and/or dynamic recrystallization dominates at high temperatures irrespective of boron addition. Microstructural features for both the alloys display bending and kinking of alpha lamellae for near alpha test temperatures. Unlike Ti-6Al-4V, no sign of instability formation was observed in Ti-6Al-4V-0.1B for any deformation condition except for cavitation around TiB particles, due to deformation incompatibility and strain accumulation at the particle-matrix interface. The absence of macroscopic instabilities and early initiation of softening mechanisms as a result of boron addition has been attributed to microstructural features (e.g. refined prior beta grain and alpha colony size, absence of grain boundary alpha layer, presence of TiB particles at prior beta boundaries, etc.) of the respective alloys prior to deformation. (C) 2012 Elsevier B.V. All rights reserved.