333 resultados para vector optimization
Resumo:
The voltage ripple and power loss in the DC-capacitor of a voltage source inverter depend on the harmonic currents flowing through the capacitor. This paper presents a double Fourier series based analysis of the harmonic contents of the DC capacitor current in a three-level neutral-point clamped (NPC) inverter, modulated with sine-triangle pulse-width modulation (SPWM) or conventional space vector pulse-width modulation (CSVPWM) schemes. The analytical results are validated experimentally on a 3-kVA three-level inverter prototype. The capacitor current in an NPC inverter has a periodicity of 120(a similar to) at the fundamental or modulation frequency. Hence, this current contains third-harmonic and triplen-frequency components, apart from switching frequency components. The harmonic components vary with modulation index and power factor for both PWM schemes. The third harmonic current decreases with increase in modulation index and also decreases with increase in power factor in case of both PWM methods. In general, the third harmonic content is higher with SPWM than with CSVPWM at a given operating condition. Also, power loss and voltage ripple in the DC capacitor are estimated for both the schemes using the current harmonic spectrum and equivalent series resistance (ESR) of the capacitor.
Resumo:
The ATLAS and CMS collaborations at the LHC have performed analyses on the existing data sets, studying the case of one vector-like fermion or multiplet coupling to the standard model Yukawa sector. In the near future, with more data available, these experimental collaborations will start to investigate more realistic cases. The presence of more than one extra vector-like multiplet is indeed a common situation in many extensions of the standard model. The interplay of these vector-like multiplet between precision electroweak bounds, flavour and collider phenomenology is a important question in view of establishing bounds or for the discovery of physics beyond the standard model. In this work we study the phenomenological consequences of the presence of two vector-like multiplets. We analyse the constraints on such scenarios from tree-level data and oblique corrections for the case of mixing to each of the SM generations. In the present work, we limit to scenarios with two top-like partners and no mixing in the down-sector.
Resumo:
Support vector machines (SVM) are a popular class of supervised models in machine learning. The associated compute intensive learning algorithm limits their use in real-time applications. This paper presents a fully scalable architecture of a coprocessor, which can compute multiple rows of the kernel matrix in parallel. Further, we propose an extended variant of the popular decomposition technique, sequential minimal optimization, which we call hybrid working set (HWS) algorithm, to effectively utilize the benefits of cached kernel columns and the parallel computational power of the coprocessor. The coprocessor is implemented on Xilinx Virtex 7 field-programmable gate array-based VC707 board and achieves a speedup of upto 25x for kernel computation over single threaded computation on Intel Core i5. An application speedup of upto 15x over software implementation of LIBSVM and speedup of upto 23x over SVMLight is achieved using the HWS algorithm in unison with the coprocessor. The reduction in the number of iterations and sensitivity of the optimization time to variation in cache size using the HWS algorithm are also shown.
Resumo:
Analysis of the variability in the responses of large structural systems and quantification of their linearity or nonlinearity as a potential non-invasive means of structural system assessment from output-only condition remains a challenging problem. In this study, the Delay Vector Variance (DVV) method is used for full scale testing of both pseudo-dynamic and dynamic responses of two bridges, in order to study the degree of nonlinearity of their measured response signals. The DVV detects the presence of determinism and nonlinearity in a time series and is based upon the examination of local predictability of a signal. The pseudo-dynamic data is obtained from a concrete bridge during repair while the dynamic data is obtained from a steel railway bridge traversed by a train. We show that DVV is promising as a marker in establishing the degree to which a change in the signal nonlinearity reflects the change in the real behaviour of a structure. It is also useful in establishing the sensitivity of instruments or sensors deployed to monitor such changes. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Selection of relevant features is an open problem in Brain-computer interfacing (BCI) research. Sometimes, features extracted from brain signals are high dimensional which in turn affects the accuracy of the classifier. Selection of the most relevant features improves the performance of the classifier and reduces the computational cost of the system. In this study, we have used a combination of Bacterial Foraging Optimization and Learning Automata to determine the best subset of features from a given motor imagery electroencephalography (EEG) based BCI dataset. Here, we have employed Discrete Wavelet Transform to obtain a high dimensional feature set and classified it by Distance Likelihood Ratio Test. Our proposed feature selector produced an accuracy of 80.291% in 216 seconds.
Resumo:
Guided waves using piezo-electric wafer active sensors (PWAS) is one of the useful techniques of damage detection. Sensor network optimization with minimal network hardware footprint and maximal area of coverage remains a challenging problem. PWAS sensors are placed at discrete locations in order to inspect damages in plates and the idea has the potential to be extended to assembled structures. Various actuator-sensor configurations are possible within the network in order to identify and locate damages. In this paper we present a correlation based approach to monitor cracks emanating from rivet line using a simulated guided wave signal whose sensor is operating in pulse echo mode. Discussions regarding the identification of phase change due to reflections from the crack are also discussed in this paper.
Resumo:
In metropolitan cities, public transportation service plays a vital role in mobility of people, and it has to introduce new routes more frequently due to the fast development of the city in terms of population growth and city size. Whenever there is introduction of new route or increase in frequency of buses, the nonrevenue kilometers covered by the buses increases as depot and route starting/ending points are at different places. This non-revenue kilometers or dead kilometers depends on the distance between depot and route starting point/ending point. The dead kilometers not only results in revenue loss but also results in an increase in the operating cost because of the extra kilometers covered by buses. Reduction of dead kilometers is necessary for the economic growth of the public transportation system. Therefore, in this study, the attention is focused on minimizing dead kilometers by optimizing allocation of buses to depots depending upon the shortest distance between depot and route starting/ending points. We consider also depot capacity and time period of operation during allocation of buses to ensure parking safety and proper maintenance of buses. Mathematical model is developed considering the aforementioned parameters, which is a mixed integer program, and applied to Bangalore Metropolitan Transport Corporation (BMTC) routes operating presently in order to obtain optimal bus allocation to depots. Database for dead kilometers of depots in BMTC for all the schedules are generated using the Form-4 (trip sheet) of each schedule to analyze depot-wise and division-wise dead kilometers. This study also suggests alternative locations where depots can be located to reduce dead kilometers. Copyright (C) 2015 John Wiley & Sons, Ltd.
Resumo:
A new method of selection of time-to-go (t(go)) for Generalized Vector Explicit Guidance (GENEX) law have been proposed in this paper. t(go) is known to be an important parameter in the control and cost function of GENEX guidance law. In this paper the formulation has been done to find an optimal value of t(go) that minimizes the performance cost. Mechanization of GENEX with this optimal t(go) reduces the lateral acceleration demand and consequently increases the range of the interceptor. This new formulation of computing t(go) comes in closed form and thus it can be implemented onboard. This new formulation is applied in the terminal phase of an surface-to-air interceptor for an angle constrained engagement. Results generated by simulation justify the use of optimal t(go).
Resumo:
A fuel optimal nonlinear sub-optimal guidance scheme is presented in this paper for soft landing of a lunar craft during the powered descent phase. The recently developed Generalized Model Predictive Static Programming (G-MPSP) is used to compute the required magnitude and angle of the thrust vector. Both terminal position and velocity vector are imposed as hard constraints, which ensures high position accuracy and facilitates initiation of vertical descent at the end of the powered descent phase. A key feature of the G-MPSP algorithm is that it converts the nonlinear dynamic programming problem into a low-dimensional static optimization problem (of the same dimension as the output vector). The control history update is done in closed form after computing a time-varying weighting matrix through a backward integration process. This feature makes the algorithm computationally efficient, which makes it suitable for on-board applications. The effectiveness of the proposed guidance algorithm is demonstrated through promising simulation results.
Resumo:
Multilevel inverters with dodecagonal (12-sided polygon) voltage space vector (SV) structures have advantages like extension of linear modulation range, elimination of fifth and seventh harmonics in phase voltages and currents for the full modulation range including extreme 12-step operation, reduced device voltage ratings, lesser dv/dt stresses on devices and motor phase windings resulting in lower EMI/EMC problems, and lower switching frequency-making it more suitable for high-power drive applications. This paper proposes a simple method to obtain pulsewidth modulation (PWM) timings for a dodecagonal voltage SV structure using only sampled reference voltages. In addition to this, a carrier-based method for obtaining the PWM timings for a general N-level dodecagonal structure is proposed in this paper for the first time. The algorithm outputs the triangle information and the PWM timing values which can be set as the compare values for any carrier-based hardware PWM module to obtain SV PWM like switching sequences. The proposed method eliminates the need for angle estimation, computation of modulation indices, and iterative search algorithms that are typical in multilevel dodecagonal SV systems. The proposed PWM scheme was implemented on a five-level dodecagonal SV structure. Exhaustive simulation and experimental results for steady-state and transient conditions are presented to validate the proposed method.
Resumo:
This paper presents the design and implementation of PolyMage, a domain-specific language and compiler for image processing pipelines. An image processing pipeline can be viewed as a graph of interconnected stages which process images successively. Each stage typically performs one of point-wise, stencil, reduction or data-dependent operations on image pixels. Individual stages in a pipeline typically exhibit abundant data parallelism that can be exploited with relative ease. However, the stages also require high memory bandwidth preventing effective utilization of parallelism available on modern architectures. For applications that demand high performance, the traditional options are to use optimized libraries like OpenCV or to optimize manually. While using libraries precludes optimization across library routines, manual optimization accounting for both parallelism and locality is very tedious. The focus of our system, PolyMage, is on automatically generating high-performance implementations of image processing pipelines expressed in a high-level declarative language. Our optimization approach primarily relies on the transformation and code generation capabilities of the polyhedral compiler framework. To the best of our knowledge, this is the first model-driven compiler for image processing pipelines that performs complex fusion, tiling, and storage optimization automatically. Experimental results on a modern multicore system show that the performance achieved by our automatic approach is up to 1.81x better than that achieved through manual tuning in Halide, a state-of-the-art language and compiler for image processing pipelines. For a camera raw image processing pipeline, our performance is comparable to that of a hand-tuned implementation.
Resumo:
A combustion technique is used to study the synthesis of carbon nano tubes from waste plastic as a precursor and Ni/Mo/MgO as a catalyst. The catalytic activity of three components Ni, Mo, MgO is measured in terms of amount of carbon product obtained. Different proportions of metal ions are optimized using mixture experiment in Design expert software. D-optimal design technique is adopted due to nonsimplex region and presence of constraints in the mixture experiment. The activity of the components is observed to be interdependent and the component Ni is found to be more effective. The catalyst containing Ni0.8Mo0.1MgO0.1 yields more carbon product. The structure of catalyst and CNTs are studied by using SEM, XRD, and Raman spectroscopy. SEM analysis shows the formation of longer CNTs with average diameter of 40-50 nm.
Resumo:
We discuss the potential application of high dc voltage sensing using thin-film transistors (TFTs) on flexible substrates. High voltage sensing has potential applications for power transmission instrumentation. For this, we consider a gate metal-substrate-semiconductor architecture for TFTs. In this architecture, the flexible substrate not only provides mechanical support but also plays the role of the gate dielectric of the TFT. Hence, the thickness of the substrate needs to be optimized for maximizing transconductance, minimizing mechanical stress, and minimizing gate leakage currents. We discuss this optimization, and develop n-type and p-type organic TFTs using polyvinyldene fluoride as the substrate-gate insulator. Circuits are also realized to achieve level shifting, amplification, and high drain voltage operation.
Resumo:
Constant-volts-per-hertz induction motor drives and vector-controlled induction motor drives utilize pulsewidth modulation (PWM) to control the voltage applied on the motor. The method of PWM influences the pulsations in the torque developed by the motor. A space-vector-based approach to PWM facilitates special switching sequences involving the division of active state time. This paper proposes a space-vector-based hybrid PWM technique, which is a combination of the conventional and special switching sequences. The proposed hybrid PWM technique results in a lower peak-to-peak torque ripple than conventional space vector PWM(CSVPWM) at high speeds of an induction motor drive. Furthermore, the magnitude of the dominant torque harmonic due to the proposed hybrid PWM is significantly lower than that due to CSVPWM at high speeds of the drive. Experimental results from a 3.75-kW sensorless vector-controlled induction motor drive under various load conditions are presented to support analytical and simulation results.