382 resultados para state decentralization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the initial height on the temporal persistence probability of steady-state height fluctuations in up-down symmetric linear models of surface growth are investigated. We study the (1 + 1)-dimensional Family model and the (1 + 1)-and (2 + 1)-dimensional larger curvature (LC) model. Both the Family and LC models have up-down symmetry, so the positive and negative persistence probabilities in the steady state, averaged over all values of the initial height h(0), are equal to each other. However, these two probabilities are not equal if one considers a fixed nonzero value of h(0). Plots of the positive persistence probability for negative initial height versus time exhibit power-law behavior if the magnitude of the initial height is larger than the interface width at saturation. By symmetry, the negative persistence probability for positive initial height also exhibits the same behavior. The persistence exponent that describes this power-law decay decreases as the magnitude of the initial height is increased. The dependence of the persistence probability on the initial height, the system size, and the discrete sampling time is found to exhibit scaling behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of the pre-morphotropic phase boundary (MPB) cubic-like state in the lead-free piezoelectric ceramics (1-x)Na1/2Bi1/2TiO3-(x)BaTiO3 at x similar to 0.06 has been examined in detail by electric field and temperature dependent neutron diffraction, x-ray diffraction, dielectric and ferroelectric characterization. The superlattice reflections in the neutron diffraction patterns cannot be explained with the tetragonal P4bm and the rhombohedral (R3c) phase coexistence model. The cubic like state is rather a result of long ranged modulated complex octahedral tilt. This modulated structure exhibits anomalously large dielectric dispersion. The modulated structure transforms to a MPB state on poling. The field-stabilized MPB state is destroyed and the modulated structure is restored on heating the poled specimen above the Vogel-Fulcher freezing temperature. The results show the predominant role of competing octahedral tilts in determining the nature of structural and polar states in Na1/2Bi1/2TiO3-based ferroelectrics. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ferroelectric system (1-x)PbZrO3-(x)Bi(Mg1/2Ti1/2)O-3 has been investigated as a function of composition, temperature, and electric field by x-ray powder diffraction, dielectric, and ferroelectric measurements. Within the solubility limit (x similar to 0.25), the system evolves from an orthorhombic-antiferroelectric to rhombohedral-ferroelectric state through a phase coexistence region. The highest polarization was found not for the composition exhibiting a pure ferroelectric state, but for a composition x = 0.15 exhibiting ferroelectric + antiferroelectric phase coexistence close to the rhombohedral phase boundary. Electric poling of the equilibrium two-phase state led to irreversible enhancement in the rhombohedral phase fraction suggesting that the enhanced polarization is related to the enhanced polarizability of the lattice due to first order criticality as in ferroelectric-ferroelectric morphotropic phase boundary systems. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aqueous dispersions of graphene oxide (GO) exhibit strong pH-dependent fluorescence in the visible that originates, in part, from the oxygenated functionalities present. Here we examine the spectral migration on nanosecond time-scales of the pH dependent features in the fluorescence spectra. We show, from time-resolved emission spectra (TRES) constructed from the wavelength dependent fluorescence decay curves, that the migration is associated with excited state proton transfer. Both `intramolecular' and `intermolecular' transfer involving the quasi-molecular oxygenated aromatic fragments are observed. As a prerequisite to the time-resolved measurements, we have correlated the changes in the steady state fluorescence spectra with the sequence of dissociation events that occur in GO dispersions at different values of pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solvent polarity has been known to influence the triplet state structure and reactivity. Here, we present our experimental and theoretical study on the effect of solvent on the lowest triplet excited state structure of 2-chlorothioxanthone (CTX). Time-resolved absorption (TA) spectroscopy has been employed to understand the triplet state electronic structure; whereas solvent-induced structural changes have been studied using time-resolved resonance Raman (TR3) spectroscopy. Both the DFT and TD-DFT calculations have been performed in the solution phase employing self-consistent reaction field implicit solvation model to support the experimental data. It has been observed that CO stretching frequencies of the excited triplet state are sensitive to the solvent polarity and increase with the increase in the solvent polarity. Both TA and TR3 studies reveal that specific solvent effect (H-bonding) is more pronounced in comparison to the nonspecific solvent effect. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infinite horizon discounted-cost and ergodic-cost risk-sensitive zero-sum stochastic games for controlled Markov chains with countably many states are analyzed. Upper and lower values for these games are established. The existence of value and saddle-point equilibria in the class of Markov strategies is proved for the discounted-cost game. The existence of value and saddle-point equilibria in the class of stationary strategies is proved under the uniform ergodicity condition for the ergodic-cost game. The value of the ergodic-cost game happens to be the product of the inverse of the risk-sensitivity factor and the logarithm of the common Perron-Frobenius eigenvalue of the associated controlled nonlinear kernels. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hit-to-kill interception of high velocity spiraling target requires accurate state estimation of relative kinematic parameters describing spiralling motion. In this pa- per, spiraling target motion is captured by representing target acceleration through sinusoidal function in inertial frame. A nine state unscented Kalman filter (UKF) formulation is presented here with three relative positions, three relative velocities, spiraling frequency of target, inverse of ballistic coefficient and maneuvering coef-ficient. A key advantage of the target model presented here is that it is of generic nature and can capture spiraling as well as pure ballistic motions without any change of tuning parameters. Extensive Six-DOF simulation experiments, which includes a modified PN guidance and dynamic inversion based autopilot, show that near Hit-to-Kill performance can be obtained with noisy RF seeker measurements of gimbal angles, gimbal angle rates, range and range rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flaviviral RNA-dependent RNA polymerases (RdRps) initiate replication of the single-stranded RNA genome in the absence of a primer. The template sequence 5'-CU-3' at the 3'-end of the flaviviral genome is highly conserved. Surprisingly, flaviviral RdRps require high concentrations of the second incoming nucleotide GTP to catalyze de novo template-dependent RNA synthesis. We show that GTP stimulates de novo RNA synthesis by RdRp from Japanese encephalitis virus (jRdRp) also. Crystal structures of jRdRp complexed with GTP and ATP provide a basis for specific recognition of GTP. Comparison of the jRdRp(GTP) structure with other viral RdRp-GTP structures shows that GTP binds jRdRp in a novel conformation. Apo-jRdRp structure suggests that the conserved motif F of jRdRp occupies multiple conformations in absence of GTP. Motif F becomes ordered on GTP binding and occludes the nucleotide triphosphate entry tunnel. Mutational analysis of key residues that interact with GTP evinces that the jRdRp(GTP) structure represents a novel pre-initiation state. Also, binding studies show that GTP binding reduces affinity of RdRp for RNA, but the presence of the catalytic Mn2+ ion abolishes this inhibition. Collectively, these observations suggest that the observed pre-initiation state may serve as a check-point to prevent erroneous template-independent RNA synthesis by jRdRp during initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Landslide hazards are a major natural disaster that affects most of the hilly regions around the world. In India, significant damages due to earthquake induced landslides have been reported in the Himalayan region and also in the Western Ghat region. Thus there is a requirement of a quantitative macro-level landslide hazard assessment within the Indian subcontinent in order to identify the regions with high hazard. In the present study, the seismic landslide hazard for the entire state of Karnataka, India was assessed using topographic slope map, derived from the Digital Elevation Model (DEM) data. The available ASTER DEM data, resampled to 50 m resolution, was used for deriving the slope map of the entire state. Considering linear source model, deterministic seismic hazard analysis was carried out to estimate peak horizontal acceleration (PHA) at bedrock, for each of the grid points having terrain angle 10A degrees and above. The surface level PHA was estimated using nonlinear site amplification technique, considering B-type NEHRP site class. Based on the surface level PHA and slope angle, the seismic landslide hazard for each grid point was estimated in terms of the static factor of safety required to resist landslide, using Newmark's analysis. The analysis was carried out at the district level and the landslide hazard map for all the districts in the Karnataka state was developed first. These were then merged together to obtain a quantitative seismic landslide hazard map of the entire state of Karnataka. Spatial variations in the landslide hazard for all districts as well as for the entire state Karnataka is presented in this paper. The present study shows that the Western Ghat region of the Karnataka state is found to have high landslide hazard where the static factor of safety required to resist landslide is very high.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extended Kalman filter based generalized state estimation approach is presented in this paper for accurately estimating the states of incoming high-speed targets such as ballistic missiles. A key advantage of this nine-state problem formulation is that it is very much generic and can capture spiraling as well as pure ballistic motion of targets without any change of the target model and the tuning parameters. A new nonlinear model predictive zero-effort-miss based guidance algorithm is also presented in this paper, in which both the zero-effort-miss as well as the time-to-go are predicted more accurately by first propagating the nonlinear target model (with estimated states) and zero-effort interceptor model simultaneously. This information is then used for computing the necessary lateral acceleration. Extensive six-degrees-of-freedom simulation experiments, which include noisy seeker measurements, a nonlinear dynamic inversion based autopilot for the interceptor along with appropriate actuator and sensor models and magnitude and rate saturation limits for the fin deflections, show that near-zero miss distance (i.e., hit-to-kill level performance) can be obtained when these two new techniques are applied together. Comparison studies with an augmented proportional navigation based guidance shows that the proposed model predictive guidance leads to a substantial amount of conservation in the control energy as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diketopyrrolopyrrole (DPP) based molecular semiconductors have emerged as promising materials for high performance active layers in organic solar cells. It is imperative to comprehend the origin of such a property by investigating the fundamental structure property correlation. In this report we have investigated the role of the donor group in DPP based donor-acceptor- donor (D-A-D) structure to govern the solid state, photophysical and electrochemical properties. We have prepared three derivatives of DPP with varying strengths of the donor groups, such as phenyl (PDPP-Hex), thiophene (TDPP-Hex) and selenophene (SeDPP-Hex). The influence of the donor units on the solid state packing was studied by single crystal X-ray diffraction. The photophysical, electrochemical and density functional theory ( DFT) results were combined to elucidate the structural and electronic properties of three DPP derivatives. We found that these DPP derivatives crystallized in the monoclinic space group P21/c and show herringbone packing in the crystal lattice. The derivatives exhibit weak p-p stacking interactions as two neighboring molecules slip away from each other with varied torsional angles at the donor units. The high torsional angle of 32 degrees ( PDPP-Hex) between the phenyl and lactam ring results in weak intramolecular interactions between the donor and acceptor, while TDPP-Hex and SeDPP-Hex show lower torsional angles of 9 degrees and 12 degrees with a strong overlap between the donor and acceptor units. The photophysical properties reveal that PDPP-Hex exhibits a high Stokes shift of 0.32 eV and SeDPP- Hex shows a high molar absorption co-efficient of 33 600 L mol -1 1 cm -1 1 with a low band gap of similar to 2.2 eV. The electrochemical studies of SeDPP- Hex indicate the pronounced effect of selenium in stabilizing the LUMO energy levels and this further emphasizes the importance of chalcogens in developing new n-type organic semiconductors for optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid drops impacted on textured surfaces undergo a transition from the Cassie state characterized by the presence of air pockets inside the roughness valleys below the drop to an impaled state with at least one of the roughness valleys filled with drop liquid. This occurs when the drop impact velocity exceeds a particular value referred to as the critical impact velocity. The present study investigates such a transition process during water drop impact on surfaces textured with unidirectional parallel grooves referred to as groove-textured surfaces. The process of liquid impalement into a groove in the vicinity of drop impact through de-pinning of the three-phase contact line (TPCL) beneath the drop as well as the critical impact velocity were identified experimentally from high speed video recordings of water drop impact on six different groove-textured surfaces made from intrinsically hydrophilic (stainless steel) as well as intrinsically hydrophobic (PDMS and rough aluminum) materials. The surface energy of various 2-D configurations of liquid-vapor interface beneath the drop near the drop impact point was theoretically investigated to identify the locally stable configurations and establish a pathway for the liquid impalement process. A force balance analysis performed on the liquid-vapor interface configuration just prior to TPCL de-pinning provided an expression for the critical drop impact velocity, U-o,U-cr, beyond which the drop state transitions from the Cassie to an impaled state. The theoretical model predicts that Uo, cr increases with the increase in pillar side angle, a, and intrinsic hydrophobicity whereas it decreases with the increase in groove top width, w, of the groove-textured surface. The quantitative predictions of the theoretical model were found to show good agreement with the experimental measurements of U-o,U-cr plotted against the surface texture geometry factor in our model, {tan(alpha/2)/w}(0.5).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systematic cocrystallization of hydroxybenzoic acids with hexamine using liquid-assisted grinding shows facile solid state interconversion among different stoichiometric variants. The reversible interconversion caused by varying both the acid and base components in tandem is shown to be a consequence of hydrogen-bonded synthon modularity present in all representative crystal structures. Among a total of 11 complexes, three are salts and eight are cocrystals. The insulated synthons appear as conserved tetrameric motifs in the structures, and the mechanism of interconversion is closely monitored by the synthon modularity. The interconversion is consistent with the theoretically computed stabilization energies of all the tetramers found in this series of cocrystals based on atoms in molecule calculations.