403 resultados para heat generation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the development of surface instabilities leading to the generation of multielectron bubbles (MEBs) in superfluid helium upon the application of a pulsed electric field. We found the statistical distribution of the charge of individual instabilities to be strongly dependent on the duration of the electric field pulse. The rate and probability of generation of these instabilities in relation to the temporal characteristics of the applied field was also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the backdrop of climate change scenario, there is emphasis on controlling emission of greenhouse gases such as CO2. Major thrust being seen worldwide as well as in India is for generation of electricity from renewable sources like solar and wind. Chitradurga area of Karnataka is identified as a suitable location for the production of electricity from wind turbines because of high wind-energy resource. The power generated and the performance of 18 wind turbines located in this region are studied based on the actual field data collected over the past seven years. Our study shows a good prospect for expansion of power production using wind turbines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports an experimental investigation of oscillating temperature field beneath a single isolated nucleation site using a non-invasive TLC (thermochromic liquid crystal) based thermography technique. Empirical correlations are presented to demonstrate the influence of system pressure and wall heat flux on different ebullition characteristics in the nucleate pool boiling regime of refrigerant R-134a. TLC transient response and two-phase flow structure are captured using synchronized, high resolution imaging. It is observed that the area of influence of nucleation site exhibits a two-part distinct transient behavior during the bubble growth period and broadens to a maximum of 1.57 times the bubble diameter at the instant of bubble departure. This is accompanied by a sharp fall of 2.5 degrees C in the local excess temperature at the nucleation site, which results in momentary augmentation (similar to 40%) in the local heat transfer coefficient at the nucleation origin. The enhanced heat transfer rate observed during the bubble peel-off event is primarily due to transient micro-convection in the wake of the retreating bubble. Further, the results indicate that a slight increase in system pressure from 813.6 to 882.5 kPa has no considerable effect on either the wall superheat or the overall heat transfer coefficient and ebullition frequency. In addition, correlations have been obtained for bubble Reynolds number, Jackob number and the dimensionless bubble generation frequency in terms of modified boiling number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Success in the advancement of thermoacoustic field led the researchers to develop the thermoacoustic engines which found its applications in various fields such as refrigeration, gas mixture separation, natural gas liquefaction, and cryogenics. The objective of this study is to design and fabricate the twin thermoacoustic heat engine (TAHE) producing the acoustic waves with high resonance frequencies which is used to drive a thermoacoustic refrigerator efficiently by the influence of geometrical parameters and working fluids. Twin TAHE has gained significant attention due to the production of high intensity acoustic waves than single TAHE. In order to drive an efficient thermoacoustic refrigerator, a twin thermoacoustic heat engine is built up and its performance are analysed by varying the resonator length and working fluid. The performance is measured in terms of onset temperature difference, resonance frequency and pressure amplitude of the oscillations generated from twin TAHE. The simulation is performed using free software DeltaEC, from LANL, USA. The simulated DeltaEC results are compared with experimental results and the deviations are found within +10%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, silver nanoparticles were rapidly synthesized by treating silver ions with Citrus limon (lemon) extract at higher temperature. The effect of process parameters like reductant concentration, mixing ratio of the reactants, concentration of silver nitrate and heating time period were studied. The formation of silver nanoparticles was confirmed by surface plasmon resonance as determined by UV-visible spectra in the range of 400-500 nm. X-ray diffraction analysis revealed the distinctive facets (111, 200, 220, 222 and 311 planes) of silver nanoparticles. Nanoparticles below 50 nm with spherical and spheroidal shape were observed from microscopic studies. The study offers a rapid method to synthesize silver nanoparticles within ten minutes of interaction with the bio-reductant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With ever increasing demand for electric energy, additional generation and associated transmission facilities has to be planned and executed. In order to augment existing transmission facilities, proper planning and selective decisions are to be made whereas keeping in mind the interests of several parties who are directly or indirectly involved. Common trend is to plan optimal generation expansion over the planning period in order to meet the projected demand with minimum cost capacity addition along with a pre-specified reliability margin. Generation expansion at certain locations need new transmission network which involves serious problems such as getting right of way, environmental clearance etc. In this study, an approach to the citing of additional generation facilities in a given system with minimum or no expansion in the transmission facility is attempted using the network connectivity and the concept of electrical distance for projected load demand. The proposed approach is suitable for large interconnected systems with multiple utilities. Sample illustration on real life system is presented in order to show how this approach improves the overall performance on the operation of the system with specified performance parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main theme of this paper is to study the flammability suppression of hydrocarbons by blending with carbon dioxide, and to evaluate these mixtures as possible working fluids in organic Rankine cycle for medium temperature concentrated solar power applications. The analysis takes into account inevitable irreversibilities in the turbine, the pump, and heat exchangers. While the isopentane + CO2 mixture suffers from high irreversibility mainly in the regenerator owing to a large temperature glide, the propane + CO2 mixture performs more or less the same as pure propane albeit with high cycle pressures. In general, large temperature glides at condensing pressures extend the heat recovery into the two-phase dome, which is an advantage. However, at the same time, the shift of the pinch point towards the warm end of the regenerator is found to be a major cause of irreversibility. In fact, as the number of carbon atoms in alkanes decreases, their blend with CO2 moves the pinch point to the colder end of the regenerator. This results in lower entropy generation in the regenerator and improved cycle efficiency of propane + CO2 mixtures. With this mixture, real cycle efficiencies of 15-18% are achievable at a moderate source temperature of 573 K. Applicability for a wide range of source temperatures is found to be an added advantage of this mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper primarily intends to develop a GIS (geographical information system)-based data mining approach for optimally selecting the locations and determining installed capacities for setting up distributed biomass power generation systems in the context of decentralized energy planning for rural regions. The optimal locations within a cluster of villages are obtained by matching the installed capacity needed with the demand for power, minimizing the cost of transportation of biomass from dispersed sources to power generation system, and cost of distribution of electricity from the power generation system to demand centers or villages. The methodology was validated by using it for developing an optimal plan for implementing distributed biomass-based power systems for meeting the rural electricity needs of Tumkur district in India consisting of 2700 villages. The approach uses a k-medoid clustering algorithm to divide the total region into clusters of villages and locate biomass power generation systems at the medoids. The optimal value of k is determined iteratively by running the algorithm for the entire search space for different values of k along with demand-supply matching constraints. The optimal value of the k is chosen such that it minimizes the total cost of system installation, costs of transportation of biomass, and transmission and distribution. A smaller region, consisting of 293 villages was selected to study the sensitivity of the results to varying demand and supply parameters. The results of clustering are represented on a GIS map for the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multilevel inverters with hexagonal and dodecagonal voltage space vector structures have improved harmonic profile compared to two level inverters. Further improvement in the quality of the waveform is possible using multilevel octadecagonal (18 sided polygon) voltage space vectors. This paper proposes an inverter circuit topology capable of generating multilevel octadecagonal voltage space vectors, by cascading two asymmetric three level inverters. By proper selection of DC link voltages and the resultant switching states for the inverters, voltage space vectors, whose tips lie on three concentric octadecagons, are obtained. The advantages of octadecagonal voltage space vector based PWM techniques are the complete elimination of fifth, seventh, eleventh and thirteenth harmonics in phase voltages and the extension of linear modulation range. In this paper, a simple PWM timing calculation method is also proposed. Matlab simulation results and experimental results have been presented in this paper to validate the proposed concept.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal diffusivity and conductivity of hot pressed ZrB2 with different amounts of B4C (0-5 wt%) and ZrB2-SiC composites (10-30 vol% SiC) were investigated experimentally over a wide range of temperature (25-1500 degrees C). Both thermal diffusivity and thermal conductivity were found to decrease with increase in temperature for all the hot pressed ZrB2 and ZrB2-SiC composites. At around 200 degrees C, thermal conductivity of ZrB2-SiC composites was found to be composition independent. Thermal conductivity of ZrB2-SiC composites was also correlated with theoretical predictions of the Maxwell Eucken relation. The dominated mechanisms of heat transport for all hot pressed ZrB2 and ZrB2-SiC composites at room temperature were confirmed by Wiedemann Franz analysis by using measured electrical conductivity of these materials at room temperature. It was found that electronic thermal conductivity dominated for all monolithic ZrB2 whereas the phonon contribution to thermal conductivity increased with SiC contents for ZrB2-SiC composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Host cell remodelling is a hallmark of malaria pathogenesis. It involves protein folding, unfolding and trafficking events and thus participation of chaperones such as Hsp70s and Hsp40s is well speculated. Until recently, only Hsp40s were thought to be the sole representative of the parasite chaperones in the exportome. However, based on the re-annotated Plasmodium falciparum genome sequence, a putative candidate for exported Hsp70 has been reported, which otherwise was known to be a pseudogene. We raised a specific antiserum against a C-terminal peptide uniquely present in PfHsp70-x. Immunoblotting and immunofluorescence-based approaches in combination with sub-cellular fractionation by saponin and streptolysin-O have been taken to determine the expression and localization of PfHsp70-x in infected erythrocyte. The re-annotated sequence of PfHsp70-x reveals it to be a functional protein with an endoplasmic reticulum signal peptide. It gets maximally expressed at the schizont stage of intra-erythrocytic life cycle. Majority of the protein localizes to the parasitophorous vacuole and some of it gets exported to the erythrocyte compartment where it associates with Maurer's clefts. The identification of an exported parasite Hsp70 chaperone presents us with the fact that the parasite has evolved customized chaperones which might be playing crucial roles in aspects of trafficking and host cell remodelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the thermo-physical changes that a droplet undergoes when it is radiatively heated in a levitated environment. The heat and mass transport model has been developed along with chemical kinetics within a cerium nitrate droplet. The chemical transformation of cerium nitrate to ceria during the process is predicted using Kramers' reaction mechanism which justifies the formation of ceria at a very low temperature as observed in experiments. The rate equation modeled by Kramers is modified suitably to be applicable within the framework of a droplet, and predicts experimental results well in both bulk form of cerium nitrate and in aqueous cerium nitrate droplet. The dependence of dissociation reaction rate on droplet size is determined and the transient mass concentration of unreacted cerium nitrate is reported. The model is validated with experiments both for liquid phase vaporization and chemical reaction. Vaporization and chemical conversion are simulated for different ambient conditions. The competitive effects of sensible heating rate and the rate of vaporization with diffusion of cerium nitrate is seen to play a key role in determining the mass fraction of ceria formed within the droplet. Spatially resolved modeling of the droplet enables the understanding of the conversion of chemical species in more detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary structure and function of nucleoside diphosphate kinase (NDK), a substrate non-specific enzyme involved in the maintenance of nucleotide pools is also implicated to play pivotal roles in many other cellular processes. NDK is conserved from bacteria to human and forms a homotetramer or hexamer to exhibit its biological activity. However, the nature of the functional oligomeric form of the enzyme differs among different organisms. The functional form of NDKs from many bacterial systems, including that of the human pathogen, Mycobacterium tuberculosis (MtuNDK), is a hexamer, although some bacterial NDKs are tetrameric in nature. The present study addresses the oligomeric property of MsmNDK and how a dimer, the basic subunit of a functional hexamer, is stabilized by hydrogen bonds and hydrophobic interactions. Homology modeling was generated using the three-dimensional structure of MtuNDK as a template; the residues interacting at the monomer-monomer interface of MsmNDK were mapped. Using recombinant enzymes of wild type, catalytically inactive mutant, and monomer-monomer interactive mutants of MsmNDK, the stability of the dimer was verified under heat, SDS, low pH, and methanol. The predicted residues (Gln17, Ser24 and Glu27) were engaged in dimer formation, however the mutated proteins retained the ATPase and GTPase activity even after introducing single (MsmNDK- Q17A, MsmNDK-E27A, and MsmNDK-E27Q) and double (MsmNDK-E27A/Q17A) mutation. However, the monomer monomer interaction could be abolished using methanol, indicating the stabilization of the monomer-monomer interaction by hydrophobic interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a multi-class support vector machine (SVMs) approach for locating and diagnosing faults in electric power distribution feeders with the penetration of Distributed Generations (DGs). The proposed approach is based on the three phase voltage and current measurements which are available at all the sources i.e. substation and at the connection points of DG. To illustrate the proposed methodology, a practical distribution feeder emanating from 132/11kV-grid substation in India with loads and suitable number of DGs at different locations is considered. To show the effectiveness of the proposed methodology, practical situations in distribution systems (DS) such as all types of faults with a wide range of varying fault locations, source short circuit (SSC) levels and fault impedances are considered for studies. The proposed fault location scheme is capable of accurately identify the fault type, location of faulted feeder section and the fault impedance. The results demonstrate the feasibility of applying the proposed method in practical in smart grid distribution automation (DA) for fault diagnosis.