503 resultados para crystal morphology
Resumo:
This paper presents a model study to understand the effect of surfactants on the physicochemical properties of human hair. FT-IR ATR spectroscopy has been employed to understand the chemical changes induced by sodium dodecyl sulfate (SDS) on human scalp hair. In particular, the SDS induced changes in the secondary structure of protein present in the outer protective layer of hair, i.e. cuticle, have been investigated. Conformational changes in the secondary structure of protein were studied by curve fitting of the amide I band after every phase of SDS treatment. It has been found that SDS brings rearrangements in the protein backbone conformations by transforming beta-sheet structure to random coil and beta-turn. Additionally, AFM and SEM studies were carried out to understand the morphological changes induced on the hair surface. SEM and AFM images demonstrated the rupture and partial erosion of cuticle sublayers.
Resumo:
alpha,beta-Dehydrophenylalanine residues constrain the peptide backbone to beta-bend conformation. A pentapeptide containing four consecutive (Delta Phe) residues has been synthesised and crystallised. The peptide Boc-LAla-Delta Phe-Delta Phe-Delta Phe-Delta Phe-NHMe (C45H46N6O7, MW = 782.86) was crystallised from an acetonitrile/methanol mixture. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1) With a = 19.455(6), b = 20.912(9), c = 11.455(4) Angstrom and Z = 4. The X-ray (MoKalpha, lambda = 0.7107 Angstrom) intensity data were collected using the Rigaku-AFC7 diffractrometer. The crystal structure was determined by direct methods and refined using the least-squares technique, R = 8.41% for 1827 reflections with \F-o\ > 4 sigma\F-o\. The molecule contains the largest stretch of consecutive dehydrophenylalanine residues whose crystal structure has been determined so far. The peptide adopts left-handed 3(10)-helical conformation despite the presence of LAla at the N-terminus. The mean phi, psi values, averaged across the last four residues are 56.8 degrees and 17.5 degrees, respectively. There are four 4-->1 intramolecular hydrogen bonds, characteristic of the 3(10)-helix. In the crystal each molecule interacts with four crystallographically symmetric molecules with one hydrogen bond each.
Resumo:
An N-alpha-protected model pentapeptide containing two consecutive Delta Phe residues, Boc-Leu-Delta Phe-Delta Phe-Ala-Phe-NHMe, has been synthesized by solution methods and fully characterized. H-1-nmr studies provided evidence for the occurrence of a significant population of a conformer having three consecutive, intramolecularly II-bonded beta-bends in solution. The solid state structure has been determined by x-ray diffraction methods. The crystals grown from aqueous methanol are orthorhombic, space group P2(1)2(1)2(1),, a = 11.503(2), b = 16.554(2), c = 22.107(3) Angstrom, V = 4209(1) Angstrom,(3) and Z = 4. The x-ray data were collected on a CAD4 diffractometer using CuKalpha radiation (lambda = 1.5418 Angstrom). The structure was determined using direct methods and refined by full-matrix least-squares procedure. The R factor is 5.3%. The molecule is characterized by a right handed 3(10)-helical conformation ((phi) = -68.2 degrees (psi) = -26.3 degrees), which is made up of two consecutive type III beta-bends and one type I beta-bend. In the solid state the helical molecules are aligned head-to-tail, thus forming long rod like structures. A comparison with other peptide structures containing consecutive Delta Phe residues is also provided. The present study confirms that the -Delta Phe-Delta Phe-sequence can be accommodated in helical structures. (C) 1997 John Wiley & Sons, Inc.
Resumo:
In continuation of our studies on the influence of fluoro substitution on the solid state photobehaviour and packing pattern of styrylcoumarins, the results obtained for 4-(3-fluorostyryl)coumarin 1, 4-styryl-6-fluorocoumarin 2 and 4-styryl-7-fluorocoumarin 3 are presented. The configuration of the dimers was established on the basis of crystal packing of 1 and 2 (alpha-packed). A rationale for the significantly lower dimer yield in the crystal for 2 is proposed. In the observed centrosymmetric arrangement of the reactants the C=O ...pi (phenyl) contacts seem to provide additional attractive interactions. C-H ... O and C-H ... F hydrogen bonding seems to provide stability in these structures.
Resumo:
The coordinating behavior of a new dihydrazone ligand, 2,6-bis(3-methoxysalicylidene) hydrazinocarbonyl]pyridine towards manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) has been described. The metal complexes were characterized by magnetic moments, conductivity measurements, spectral (IR, NMR, UV-Vis, FAB-Mass and EPR) and thermal studies. The ligand crystallizes in triclinic system, space group P-1, with alpha=98.491(10)degrees, beta=110.820(10)degrees and gamma=92.228(10)degrees. The cell dimensions are a=10.196(7)angstrom, b=10.814(7)angstrom, c=10.017(7)angstrom, Z=2 and V=1117.4(12). IR spectral studies reveal the nonadentate behavior of the ligand. All the complexes are neutral in nature and possess six-coordinate geometry around each metal center. The X-band EPR spectra of copper(II) complex at both room temperature and liquid nitrogen temperature showed unresolved broad signals with g(iso) = 2.106. Cyclic voltametric studies of copper(II) complex at different scan rates reveal that all the reaction occurring are irreversible. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Treatment of the lambda(3)-cyclotriphosphazanes, cis-{EtNP(OR)}(3) [R = C6H4Br-4 (L-1) or C6H4Br-2 (L-2)] with [Mo(CO)(4)(NBD)] (NBD = norbornadiene) yields the mononuclear complexes [Mo(CO)(4)L-1] (1) and [Mo(CO)(4)L-2] (2). which have been characterised by IR, NMR (P-31 and H-1) and FAB mass spectral data. The structure of 1 has been confirmed by single crystal X-ray analysis. The structural and conformational changes brought about by complexation are discussed in terms of a bonding model based on "negative hyperconjugation". (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Triammonium hydrogen disulphate, (NH4)(3)H(SO4)(2), belongs to the family of crystal structures M3H(XO4)(2) (with M = NH4, K, Rb, Cs, and X = S, Se) which display super protonic phases at elevated temperatures, while at room temperature these are relatively poor proton conductors. The crystal structure of triammonium hydrogen disulphate has been determined by X-ray diffraction at -90 degrees C and the variation in the characteristics of the hydrogen bond is discussed in comparison with that of the structures at -110 degrees C and room temperature. It is concluded that the mechanics involving the proton migration in such systems is realised in terms of the variations in the hydrogen bond features with temperature.
Resumo:
In continuation of our studies on crystal engineering using fluorine as a steering group, the photobehaviour of di and tri fluoro 4-styrylcoumarins has been examined. It is found that out of the five derivatives, four crystallize into P-packing mode producing syn-HH photodimer upon irradiation whereas the parent hydrocarbon produces an anti K-T dimer. The packing features of the photolabile crystals of 4-(4-fluorostyryl)-6-fluorocoumarin (1), 4-(2,6-difluorostyryl) 6-fluorocoumarin (2) and the photodimer (3a) of 4-(2,6-fluorostyryl)-7-fluorocoumarin (3) have been determined by single crystal X-ray diffraction studies. The stereochemistry of the photodimer of 4-(2-fluorostyryl)-6-fluorocoumarin (4) is deduced based on preliminary X-ray crystallographic data. However, 4-(2,6-difluorostyryl) coumarin (5) is photoinert. The remarkable steering ability of fluorine is established with the molecular packing in the crystal lattice leading to the formation of syn H-H dimer in the above four examples. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The polynuclear copper(II) complex [{Cu2L(O2CC5H4N)}. C2H5OH](x) (1), where H3L is a 1∶2 Schiff base derived from 1,3-diaminopropan-2-ol and salicylaldehyde, has been prepared and structurally characterized. The structure consists of a one-dimensional zigzag chain in which the binuclear [Cu2L](+) units are covalently linked by isonicotinate ligands to give a syndiotactic arrangement of the copper ions protruding outside the chain. In the basic unit, the copper(II) centres are bridged by an alkoxo and a carboxylato ligand, giving a Cu ... Cu distance of 3.492(3) Angstrom and a Cu-O-Cu angle of 130.9(2)degrees. While one copper centre has a square-planar geometry, the other copper is square-pyramidal with the pyridine nitrogen being the axial ligand. The visible electronic spectrum of 1 shows a broad d-d band at 615 nm. The complex shows a rhombic X-band EPR spectral pattern in the polycrystalline phase at 77 K. Magnetic susceptibility measurements in the temperature range 22 to 295 K demonstrate the antiferromagnetic behaviour of 1. A theoretical fit to the magnetic data is based on a model assuming 1 as an equimolar mixture of copper atoms belonging to an antiferromagnetically coupled one-dimensional Heisenberg chain with the other copper atoms outside the chain behaving like paramagnetic centres.
Resumo:
Properties of cast aluminium matrix composites are greatly influenced by the nature of distribution of reinforcing phase in the matrix and matrix microstructural length scales, such as grain size, dendrite arm spacing, size and morphology of secondary matrix phases, etc. Earlier workers have shown that SIC reinforcements can act as heterogeneous nucleation sites for Si during solidification of Al-Si-SiC composites. The present study aims at a quantitative understanding of the effect of SiC reinforcements on secondary matrix phases, namely eutectic Si, during solidification of A356 Al-SiC composites. Effect of volume fraction of SiC particulate on size and shape of eutectic Si has been studied at different cooling rates. Results indicate that an increase in SiC volume fraction leads to a reduction in the size of eutectic Si and also changes its morphology from needle-like to equiaxed. This is attributed to the heterogeneous nucleation of eutectic Si on SiC particles. However, SiC particles are found to have negligible influence on DAS. Under all the solidification conditions studied in the present investigation, SiC particles are found to be rejected by the growing dendrites. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The crystal structure, thermal expansion and electrical conductivity of strontium-doped neodymium ferrite (Nd1-xSrxFeO3-delta where 0less than or equal toxless than or equal to0.4) were investigated. All compositions had the GdFeO3-type orthorhombic perovskite structure. The lattice parameters were determined at room temperature by X-ray powder diffraction. The orthorhombic distortion decreases with increasing Sr substitution. The pseudocubic lattice parameter shows a minimum at x=0.3. The thermal expansion curves for x=0.2-0.4 displayed rapid increase in slope at higher temperatures. The electrical conductivity increased with Sr content and temperature. The calculated activation energies for electrical conduction decreased with increasing x. The electrical conductivity can be described by the small polaron hopping mechanism. The charge compensation for divalent ion on the A-site is provided by the formation of Fe4+ ions on the B site and vacancies on the oxygen sublattice. The results indicate two defect domains: for low values of x, the predominant defect is Fe4+ ions, whereas for higher values of x, oxygen vacancies dominate. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The crystal structure, thermal expansion and electrical conductivity of the solid solution Nd0.7Sr0.3Fe1-xCoxO3 for 0 less than or equal to x less than or equal to 0.8 were investigated. All compositions had the GdFeO3-type orthorhombic perovskite structure. The lattice parameters were determined at room temperature by X-ray powder diffraction (XRPD). The pseudo-cubic lattice constant decreased continuously with x. The average linear thermal expansion coefficient (TEC) in the temperature range from 573 to 973 K was found to increase with x. The thermal expansion curves for all values of x displayed rapid increase in slope at high temperatures. The electrical conductivity increased with x for the entire temperature range of measurement. The calculated activation energy values indicate that electrical conduction takes place primarily by the small polaron hopping mechanism. The charge compensation for the divalent ion on the A-site is provided by the formation of Fe4+ ions on the B-site (in preference to Co4+ ions) and vacancies on the oxygen sublattice for low values of x. The large increase in the conductivity with x in the range from 0.6 to 0.8 is attributed to the substitution of Fe4+ ions by Co4+ ions. The Fe site has a lower small polaron site energy than Co and hence behaves like a carrier trap, thereby drastically reducing the conductivity. The non-linear behaviour in the dependence of log sigmaT with reciprocal temperature can be attributed to the generation of additional charge carriers with increasing temperature by the charge disproportionation of Co3+ ions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The growth and dissolution dynamics of nonequilibrium crystal size distributions (CSDs) can be determined by solving the governing population balance equations (PBEs) representing reversible addition or dissociation. New PBEs are considered that intrinsically incorporate growth dispersion and yield complete CSDs. We present two approaches to solving the PBEs, a moment method and a numerical scheme. The results of the numerical scheme agree with the moment technique, which can be solved exactly when powers on mass-dependent growth and dissolution rate coefficients are either zero or one. The numerical scheme is more general and can be applied when the powers of the rate coefficients are non-integers or greater than unity. The influence of the size dependent rates on the time variation of the CSDs indicates that as equilibrium is approached, the CSDs become narrow when the exponent on the growth rate is less than the exponent on the dissolution rate. If the exponent on the growth rate is greater than the exponent on the dissolution rate, then the polydispersity continues to broaden. The computation method applies for crystals large enough that interfacial stability issues, such as ripening, can be neglected. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Nanoembedded aluminum alloys with bimetallic dispersoids of Sn and Pb of compositions Sn-82-Pb-18,Pb- Sn-64-Pb-36, and Sn-54-Pb-46 were synthesized by rapid solidification. The two phases, face-centered-cubic Pb and tetragonal Sn solid-solution, coexist in all the particles. The crystallographic relation between the two phases and the matrix depends upon the solidification pathways adopted by the particles. For Al-(Sn-82-Pb-18), we report a new orientation relation given by [011]Al//[010]Sn and (011)Al//(101)Sn. Pb exhibits a cube-on-cube orientation with Al in few particles, while in others no orientation relationship could be observed. In contrast, Pb in Sn-64-Pb-36 and Sn-54-Pb-46 particles always exhibits cube-on-cube orientation with the matrix. Sn does not show any orientation relationship with Al or Pb in these cases. Differential scanning calorimetry studies revealed melting at eutectic temperature for all compositions, although solidification pathways are different. Attempts were made to correlate these with the melting and heterogeneous nucleation. characteristics.