477 resultados para composite film


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A minimum weight design of laminated composite structures is carried out for different loading conditions and failure criteria using genetic algorithm. The phenomenological maximum stress (MS) and Tsai-Wu (TW) criteria and the micro-mechanism-based failure mechanism based (FMB) failure criteria are considered. A new failure envelope called the Most Conservative Failure Envelope (MCFE) is proposed by combining the three failure envelopes based on the lowest absolute values of the strengths predicted. The effect of shear loading on the MCFE is investigated. The interaction between the loading conditions, failure criteria, and strength-based optimal design is brought out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge transport in sulfonated multi-wall carbon nanotube (sMWNT)-Nafion composite is reported. The scanning electron microscope images of the composite, at 1 and 10 wt % of sMWNT, show that the nanotubes are well dispersed in polymer matrix, with conductivity values of 0.005 and 3.2 S/cm, respectively; and the percolation threshold is nearly 0.42 wt. %. The exponent (∼0.25) of the temperature dependence of conductivity in both samples indicates Mott's variable range hopping (VRH) transport. The conductance in 1 wt. % sample increases by three orders of magnitude at high electric-fields, consistent with VRH model. The negative magnetoresistance in 10 wt. % sample is attributed to the forward interference scattering mechanism in VRH transport. The ac conductance in 1 wt. % sample is expressed by σ(ω)∝ωs, and the temperature dependence of s follows the correlated barrier hopping model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic-inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic-organic nanocomposite, comprising Cu4O3-CuO-C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu-4(deaH)(dea)(oAc)(5) a <...aEuro parts per thousand(CH3)(2)CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dielectric measurements carried out on drop casted from solution of emeraldine base form of polyaniline films in the temperature range 30-300 degrees C revealed occurrence of two maxima in the loss tangent as a function of temperature. The activation energies corresponding to these two relaxation processes were found to be similar to 0.5 eV and similar to 1.5 eV. The occurrence of one relaxation peak in the dispersion curve of the imaginary part of the electric modulus suggests the absence of microphase separation in the film. Thermogravimetric analysis and infrared spectroscopic measurements showed that the films retained its integrity up to 300 degrees C. The dielectric relaxation at higher temperatures with large activation energy of 1.5 eV is attributed to increase in the barrier potential due to decrease in the polymer conjugation as a result of wide amplitude motion of the chain segments well above the glass transition temperature. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ge2Sb2Te5 (GST) films, one of the most suitable Chalcogenide alloys for Phase change Random Access Memory applications are studied for changes in sheet resistance, optical transmission, morphology and surface science by annealing at various transition temperatures. The crystallization leads to an increase of grain size and roughness in the films and the resistance changes to three orders of magnitude. Optical studies on GST films show distinct changes during phase transitions and the optical parameters are calculated. An increase of Tauc parameters B-1/2 indicates a reduction in disorder during phase transition. It is confirmed from XPS studies that Ge-Te, Sb-Te bonds are present in both amorphous and crystalline phases whereas Sb-Ge, Te-Te, Sb-Sb bonds are absent. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residual strength (room temperature strength after exposure in air at high temperatures) of hot pressed ZrB2-SiC composites was evaluated as function of SiC contents (10-30 vol%) as well as exposure temperatures for 5 h (1000-1700 degrees C). Multilayer oxide scale structures were found after exposures. The composition and thickness of these multilayered oxide scale structure was dependent on exposure temperature and SiC contents in composites. After exposure to 1000 degrees C for 5 h, the residual strength of ZrB2-SiC composites improved by nearly 60% compared to the as-hot pressed composites with 20 and 30 vol% SiC. On the other hand, the residual strength of these composites remained unchanged after 1500 degrees C for 5 h. A drastic degradation in residual strength was observed in composites with 20 and 30 vol% SiC after exposure to 1700 degrees C for 5 h in ZrB2-SiC. An attempt was made to correlate the microstructural changes and oxide scales with residual strength with respect to variation in SiC content and temperature of expsoure. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Film flows on inclined surfaces are often assumed to be of constant thickness, which ensures that the velocity profile is half-Poiseuille. It is shown here that by shallow water theory, only flows in a portion of Reynolds number-Froude number (Re-Fr) plane can asymptotically attain constant film thickness. In another portion on the plane, the constant thickness solution appears as an unstable fixed point, while in other regions the film thickness seems to asymptote to a positive slope. Our simulations of the Navier-Stokes equations confirm the predictions of shallow water theory at higher Froude numbers, but disagree with them at lower Froude numbers. We show that different regimes of film flow show completely different stability behaviour from that predicted earlier. Supercritical decelerating flows are shown to be always unstable, whereas accelerating flows become unstable below a certain Reynolds number for a given Froude number. Subcritical flows on the other hand are shown to be unstable above a certain Reynolds number. In some range of parameters, two solutions for the base flowexist, and the attached profile is found to be more stable. All flows except those with separation become more stable as they proceed downstream. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4758299]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Halloysite nanotubes (HNTs) of the dimension 50nm x 1-3 mu m (diameter x length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni-P-HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni-P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni-P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni-P matrix leading to the development of high performance Ni-P-HNT composite coatings. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a decentralized/peer-to-peer architecture-based parallel version of the vector evaluated particle swarm optimization (VEPSO) algorithm for multi-objective design optimization of laminated composite plates using message passing interface (MPI). The design optimization of laminated composite plates being a combinatorially explosive constrained non-linear optimization problem (CNOP), with many design variables and a vast solution space, warrants the use of non-parametric and heuristic optimization algorithms like PSO. Optimization requires minimizing both the weight and cost of these composite plates, simultaneously, which renders the problem multi-objective. Hence VEPSO, a multi-objective variant of the PSO algorithm, is used. Despite the use of such a heuristic, the application problem, being computationally intensive, suffers from long execution times due to sequential computation. Hence, a parallel version of the PSO algorithm for the problem has been developed to run on several nodes of an IBM P720 cluster. The proposed parallel algorithm, using MPI's collective communication directives, establishes a peer-to-peer relationship between the constituent parallel processes, deviating from the more common master-slave approach, in achieving reduction of computation time by factor of up to 10. Finally we show the effectiveness of the proposed parallel algorithm by comparing it with a serial implementation of VEPSO and a parallel implementation of the vector evaluated genetic algorithm (VEGA) for the same design problem. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple method to enhance the piezoresistive sensitivity of a gold film by more than 30 times and demonstrate it using a microcantilever resonator. Our method depends on controlled electromigration that we use to tune the resistance and sensitivity of the piezoresistive sensor. We attribute the enhancement in strain sensitivity to the creation of an inhomogeneous conduction medium at a predefined location by directed and controlled electromigration. We understand this phenomenon with tunneling-percolation model, which was originally hypothesized to explain nonuniversal percolation behavior of composite materials. 2012-0174]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, Na0.33V2O5 center dot 1.5H(2)O nanorings/nanorods and Na0.33V2O5 center dot 1.5H(2)O/reduced graphene oxide (RGO) composites have been prepared through a facile hydrothermal route in acidic medium at 200 degrees C for 2 days. The hydrothermally derived products have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, UV-Visible spectroscopy, Thermogravimetric analysis (TGA), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and electrochemical discharge-charge cycling in lithium ion battery. XRD pattern exhibits the layered structure of Na0.33V2O5 center dot 1.5H(2)O and the composite shows the presence of RGO at 2 theta = 25.8 degrees. FTIR spectrum shows that the band at 760 cm(-1) could be assigned to a V-OH2 stretching mode due to coordinated water. Raman spectrum shows that the band at 264 cm(-1) is due to the presence of water molecules between the layers. FESEM/TEM micrographs reveal that the products consist of nanorings of inner diameter 5 mu m and thickness of the ring is found to be 200-300 nm. Addition of exfoliated graphene oxide (EGO) destroys the formation of rings. The reduction of EGO sheets into RGO is also evidenced by the red shift of the absorbance peak from 228 nm to 264 nm. In this composite Na0.33V2O5 center dot 1.5H(2)O nanorods may adhere to the surface of RGO and/or embedded in the RGO nanosheets. As a result, an effective three-dimensional conducting network was formed by bridging RGO nanosheets, which can facilitate electron transport effectively and thus improve the kinetics and rate performance of Na0.33V2O5 center dot 1.5H(2)O nanorings/nanorods. The Na0.33V2O5 center dot 1.5H(2)O/RGO composites exhibited a discharge capacity of 340 mAh g(-1) at a current density of 0.1 mA g(-1) and also an improved cyclic stability. RGO plays a `flexible confinement' function to enwrap Na0.33V2O5 center dot 1.5H(2)O nanorods, which can compensate for the volume change and prevent the detachment and agglomeration of pulverized Na0.33V2O5 center dot 1.5H(2)O, thus extending the cycling life of the electrode. A probable reaction mechanism for the formation of Na0.33V2O5 center dot 1.5H(2)O nanorings is also discussed. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel and simple route for near-infrared (NIR)-light controlled release of drugs has been demonstrated using graphene oxide (GO) composite microcapsules based on the unique optical properties of GO. Upon NIR-laser irradiation, the microcapsules were ruptured in a point-wise fashion due to local heating which in turn triggers the light-controlled release of the encapsulated anticancer drug doxorubicin (Dox) from these capsules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using all atomistic molecular dynamics (MD) simulations we report a microscopic picture of the carbon nanotube (6,5)-dendrimer complex for PAMAM dendrimers of generations 2 to 4. We study the compact wrapping conformations of the dendrimer onto the nanotube surface for all the three generations of PAMAM dendrimer. A high degree of wrapping for the non-protonated dendrimer is observed as compared to the protonated dendrimer. For comparison, we also study the interaction of another dendrimer, poly(propyl ether imine) (PETIM), with the nanotube. The results of the distance of closest approach as well as the number of close contacts between the nanotube and the dendrimer reveal that the PAMAM dendrimer interacts strongly as compared to the PETIM dendrimer. We also calculate the binding energy between the nanotube and the dendrimer using MM/PBSA methods and attribute the strong binding to the charge transfer between them. Dendrimer wrapping on the CNT will make it soluble and the dendrimer can act as an efficient dispersing agent for the nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrodeposition of nickel/barium hexa-aluminate (Ni/BHA) composite coatings has been carried out from a Watt's bath on mild steel substrate. BHA powders with plate habit were synthesized by solution combustion synthesis followed by heat treatment to ensure complete conversion to the hexa-aluminate phase. Heat treated material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) combined with X-ray analysis. The dispersion behaviour and stability of BHA suspensions with cationic and anionic surfactants at room temperature were studied by dynamic light scattering under different pH. The influence of BHA concentration in the electrolytic bath, deposition temperature, pH, current density and duty cycle on particle incorporation in the coatings were studied and conditions for maximum particle incorporation were established. Coatings with a roughness of about 0 center dot 4 mu m were produced by using this technique. Effect of BHA content on microhardness was also investigated. A reasonably good thickness of the coatings was achieved in a given set of conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper reports the effect of addition of small amount of Mg on the mechanical and oxidation properties of Nb-Nb3Si eutectic composites in Nb-Si system under the condition of suction casting. Mg addition increases the volume fraction of primary dendrites of Nb solid solution. This phase contains significant amount of strengthening precipitates. Two different precipitates are identified. The large plate shaped precipitates are that of hcp phase, while fine coherent precipitates have the structure similar to recently identified delta-Nb11Si2 phase. The Mg addition improves both the strength and ductility of the composite at room temperature (similar to 1.4 GPa and similar to 5% engineering strain) as well as at 700 degrees C(similar to 1.2 GPa and similar to 7% engineering strain). The presence of Mg results in a complex barrier layer which significantly increases the oxidation resistance up to a temperature of at least 1000 degrees C. (C) 2012 Elsevier B.V. All rights reserved.