367 resultados para chromium oxide
Resumo:
Ag doped BaTiO3-CuO mixed oxide thin films are evaluated for their carbon-dioxide sensing characteristics. The metal oxide films of different thicknesses are deposited on oxidized p type Si < 100 > substrate by RF Sputtering. Sensing characteristics for different CO2 concentration, (300 ppm - 1000 ppm) are obtained for different operating temperatures, (100 degrees C - 400 degrees C). Optimum temperature for maximum sensitivity is found to be 250 degrees C. The effect of annealing on sensing properties is also evaluated. The unannealed films give better sensitivity than that of annealed films. Response time and recovery time are also calculated.
Effect of oxygen vacancies on the elastic properties of zinc oxide: A first-principles investigation
Resumo:
The effect of oxygen vacancies on the elastic properties of zinc oxide (ZnO) is examined using first-principles calculations based on density functional theory. Formation energies of vacancies in different types of oxygen deficient structures were analyzed to ascertain their stability. This analysis reveals that the doubly-charged oxygen vacancy under zinc-rich growth conditions is the most stable. Results show considerable degradation of some of the elastic moduli due to the presence of oxygen vacancies, which is in agreement with recent experiments. The decrease observed in elastic constants is more pronounced with increase in vacancy concentration. Further, the charge state of the defect structure was found to influence the shear elastic constants. Evaluation of elastic anisotropy of stoichiometric and oxygen deficient ZnO indicates the significant anisotropy in elastic properties and stiff c-axis orientation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We present a physics-based closed form small signal Nonquasi-static (NQS) model for a long channel Common Double Gate MOSFET (CDG) by taking into account the asymmetry that may prevail between the gate oxide thickness. We use the unique quasi-linear relationship between the surface potentials along the channel to solve the governing continuity equation (CE) in order to develop the analytical expressions for the Y parameters. The Bessel function based solution of the CE is simplified in form of polynomials so that it could be easily implemented in any circuit simulator. The model shows good agreement with the TCAD simulation at-least till 4 times of the cut-off frequency for different device geometries and bias conditions.
Resumo:
In this paper, for the first time, we have reported the novel synthesis of reduced graphene oxide (r-GO) dendrite kind of nanomaterial. The proposed r-GO dendrite possesses multifunctional properties in various fields of sensing and separation. The dendrite was synthesized by chemical reaction in different steps. Initially, the r-GO sheet was conjugated with silane group modified magnetic nanoparticle, resulting in nanoparticle decorated r-GO. The above r-GO sheet was further reacted with a new r-GO sheet, resulting in the formation of r-GO dendrite type of structure. Multifunctional behavior of this r-GO dendrite structure was studied by different methods. First, magnetic properties were studied by vibrating sample magnetometer (VSM) and it was found that dendrite structure shows good magnetic susceptibility (180.2 emu/g). The proposed r-GO dendrite also shows a very good antibacterial behavior for Escherichia coli and excellent electrochemical behavior towards ferrocyanide probe molecule. Along with these, it also acts as a substrate for the synthesis of molecularly imprinted polymer for europium metal ion, a lanthanide. The proposed imprinted sensor shows a very high selectivity and sensitivity for europium metal ion (limit of detection= 0.019 mu g L-1) in aqueous as well as real samples. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The exceptional solution processing potential of graphene oxide (GO) is always one of its main advantages over graphene in terms of its industrial relevance in coatings, electronics, and energy storage. However, the presence of a variety of functional groups on the basal plane and edges of GO makes understanding suspension behavior in aqueous and organic solvents, a major challenge. Acoustic spectroscopy can also measure zeta potential to provide unique insight into flocculating, meta-stable, and stable suspensions of GO in deionized water and a variety of organic solvents (including ethanol, ethylene glycol, and mineral oil). As expected, a match between solvent polarity and the polar functional groups on the GO surface favors stable colloidal suspensions accompanied by a smaller aggregate size tending toward disperse individual flakes of GO. This work is significant since it describes the characteristics of GO in solution and its ability to act as a precursor for graphene-based materials.
Resumo:
Multiwall carbon nanotubes (MWNTs) were anchored onto graphene oxide sheets (GOs) via diazonium and C-C coupling reactions and characterized by spectroscopic and electron microscopic techniques. The thus synthesized MWNT-GO hybrid was then melt mixed with 50/50 polyamide6-maleic anhydride-modified acrylonitrile-butadiene-styrene (PA6-mABS) blend to design materials with high dielectric constant (30) and low dielectric loss. The phase morphology was studied by SEM and it was observed that the MWNT-GO hybrid was selectively localized in the PA6 phase of the blend. The 30 scales with the concentration of MWNT-GO in the blends, which interestingly showed a very low dielectric loss (< 0.2) making them potential candidate for capacitors. In addition, the dynamic storage modulus scales with the fraction of MWNT-GO in the blends, demonstrating their reinforcing capability as well.
Resumo:
A critical limitation that has hampered widespread application of the electrically conducting reduced graphene oxide (r-GO) is its poor aqueous dispersibility. Here we outline a strategy to obtain water-dispersible conducting r-GO sheets, free of any stabilizing agents, by exploiting the fact that the kinetics of the photoreduction of the insulating GO is heterogeneous. We show that by controlling UV exposure times and pH, we can obtain r-GO sheets with the conducting sp(2)-graphitic domains restored but with the more acidic carboxylic groups, responsible for aqueous dispersibility, intact. The resultant photoreduced r-GO sheets are both conducting and water-dispersible.
Resumo:
Tin oxide nanoparticles are synthesized using solution combustion technique and tin oxide - carbon composite thick films are fabricated with amorphous carbon as well as carbon nanotubes (CNTs). The x-ray diffraction, Raman spectroscopy and porosity measurements show that the as-synthesized nanoparticles are having rutile phase with average crystallite size similar to 7 nm and similar to 95 m(2)/g surface area. The difference between morphologies of the carbon doped and CNT doped SnO2 thick films, are characterized using scanning electron microscopy and transmission electron microscopy. The adsorption-desorption kinetics and transient response curves are analyzed using Langmuir isotherm curve fittings and modeled using power law of semiconductor gas sensors. (C) 2015 Author(s).
Nitric oxide is the key mediator of death induced by fisetin in human acute monocytic leukemia cells
Resumo:
Nitric oxide ( NO) has been shown to be effective in cancer chemoprevention and therefore drugs that help generate NO would be preferable for combination chemotherapy or solo use. This study shows a new evidence of NO as a mediator of acute leukemia cell death induced by fisetin, a promising chemotherapeutic agent. Fisetin was able to kill THP-1 cells in vivo resulting in tumor shrinkage in the mouse xenograft model. Death induction in vitro was mediated by an increase in NO resulting in double strand DNA breaks and the activation of both the extrinsic and the intrinsic apoptotic pathways. Double strand DNA breaks could be reduced if NO inhibitor was present during fisetin treatment. Fisetin also inhibited the downstream components of the mTORC1 pathway through downregulation of levels of p70 S6 kinase and inducing hypo-phosphorylation of S6 Ri P kinase, eIF4B and eEF2K. NO inhibition restored phosphorylation of downstream effectors of mTORC1 and rescued cells from death. Fisetin induced Ca2+ entry through L-type Ca2+ channels and abrogation of Ca2+ influx reduced caspase activation and cell death. NO increase and increased Ca2+ were independent phenomenon. It was inferred that apoptotic death of acute monocytic leukemia cells was induced by fisetin through increased generation of NO and elevated Ca2+ entry activating the caspase dependent apoptotic pathways. Therefore, manipulation of NO production could be viewed as a potential strategy to increase efficacy of chemotherapy in acute monocytic leukemia.
Resumo:
The potential of graphene oxide-Fe3O4 nanoparticle (GO-Fe3O4) composite as an image contrast enhancing material in magnetic resonance imaging has been investigated. Proton relaxivity values were obtained in three different homogeneous dispersions of GO-Fe3O4 composites synthesized by precipitating Fe3O4 nanoparticles in three different reaction mixtures containing 0.01 g, 0.1 g, and 0.2 g of graphene oxide. A noticeable difference in proton relaxivity values was observed between the three cases. A comprehensive structural and magnetic characterization revealed discrete differences in the extent of reduction of the graphene oxide and spacing between the graphene oxide sheets in the three composites. The GO-Fe3O4 composite framework that contained graphene oxide with least extent of reduction of the carboxyl groups and largest spacing between the graphene oxide sheets provided the optimum structure for yielding a very high transverse proton relaxivity value. It was found that the GO-Fe3O4 composites possessed good biocompatibility with normal cell lines, whereas they exhibited considerable toxicity towards breast cancer cells. (C) 2015 AIP Publishing LLC.
Resumo:
Xanthine oxidase (XOD) extracted from bovine milk was immobilized covalently via N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry onto cadmium oxide nanoparticles (CdO)/carboxylated multiwalled carbon nanotube (c-MWCNT) composite film electrodeposited on the surface of an Au electrode. The nanocomposite modified Au electrode was characterized by Fourier transform infrared (FTIR), cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of XOD. Under optimal operation conditions (25 degrees C, + 0.2 V vs. Ag/AgCl, sodium phosphate buffer, pH 7.5), the following characteristics are attributed to the biosensor: linearity of response up to xanthine concentrations of 120 mu M, detection limit of 0.05 mu M (S/N = 3) and a response time of at most 4 s. After being used 100 times over a period of 120 days, only 50% loss of the initial activity of the biosensor was evaluated when stored at 4 degrees C. The fabricated biosensor was successfully employed for the determination of xanthine in fish meat.
Resumo:
Graphene oxide (GO), prepared by chemical oxidation of graphite, serves as a building block for developing polymeric nanocomposites. However, their application in electrical conductivity is limited by the fact that the oxygen sites on GO trap electrons and impede charge transport. Conducting nanocomposites can be developed by reducing GO. Various strategies have been adopted to either reduce GO ex situ, before the composite preparation, or in situ during the development of the nanocomposites. The current state of research on in situ reduction of GO during the preparation of conducting polymeric nanocomposites is discussed in this review. The mechanism and the efficiency of reduction is discussed with respect to various strategies employed during the preparation of the nanocomposite, the type of polymer used, and the processing conditions employed, etc. Its overall effect on the electrical conductivity of the nanocomposites is also discussed and the future outlook in this area is presented.
Resumo:
In this work, porous membranes were designed by selectively etching the PEO phase, by water, from a melt-mixed PE/PEO blend. The pure water flux and the resistance across the membrane were systematically evaluated by employing an indigenously developed cross flow membrane setup. Both the phase morphology and the cross sectional morphology of the membranes was assessed by scanning electron microscopy and an attempt was made to correlate the observed morphology with the membrane performance. In order to design antibacterial membranes for water purification, partially reduced graphene oxide (rGO), silver nanoparticles (Ag) and silver nanoparticles decorated with rGO (rGO-Ag) were synthesized and incorporated directly into the blends during melt mixing. The loss of viability of bacterial cells was determined by the colony counting method using E. coli as a model bacterium. SEM images display that the direct contact with the rGO-Ag nanoparticles disrupts the cell membrane. In addition, the rGO-Ag nanoparticles exhibited a synergistic effect with respect to bacterial cell viability in comparison to both rGO and Ag nanoparticles. The possible mechanism associated with the antibacterial activity in the membranes was discussed. This study opens new avenues in designing antibacterial membranes for water purification.
Resumo:
A reactive polymer nanocomposite system was proposed as an effective water vapor barrier material for organic device encapsulation. Nanosized magnesium oxide (MgO) was synthesized by the solution combustion technique using two different fuels, lactose and alanine. The purity and crystallite size of MgO were determined from X-ray diffraction studies. The surface areas and porosity measurements were used to determine the water adsorption capacities of MgO. Nanocomposites with various concentrations (wt% = 0.25, 0.5, 1 and 2.5) of MgO were prepared using Surlyn as the base polymer. The permeation rate of moisture through the fabricated films was calculated using calcium degradation test and these rates were further used to calculate the diffusivities. Accelerated aging experiments were conducted to study the performance of organic photovoltaic devices encapsulated with synthesized films under accelerated weathering conditions. The performance of the barrier materials with synthesized MgO was also compared to that obtained with commercial MgO. The films containing MgO obtained from lactose exhibited better barrier properties compared to other films made with commercial MgO and MgO synthesized using alanine as well as other nanocomposites reported in the literature.
Resumo:
An experimental assessment of Li2MnO3 has been conducted, in conjunction with related Mn(IV) oxides, to investigate its red colour and photoluminescence. Optical absorption spectra revealed strong band gap absorption, with a sharp edge at similar to 610 nm and a transparent region between similar to 610 and similar to 650 nm, giving rise to the red colour of this compound. Octahedral Mn(IV) ligand field transitions have been observed in the excitation spectra of Li2MnO3, corresponding both to Mn(IV) at ideal sites and displaced in Li sites in the rock salt-based layered structure of Li2MnO3. Optical excitation at ligand field transition energies produces tunable emission in the red-yellow-green region, rendering Li2MnO3 a unique Mn(IV) oxide. The honeycomb-ordered LiMn6] units in its structure are probably the origin of both the absorption and the photoluminescent properties of Li2MnO3.