325 resultados para X-ray crystal structures
Resumo:
Pure alpha-Al2O3 exhibits a very high degree of thermodynamical stability among all metal oxides and forms an inert oxide scale in a range of structural alloys at high temperatures. We report that amorphous Al2O3 thin films sputter deposited over crystalline Si instead show a surprisingly active interface. On annealing, crystallization begins with nuclei of a phase closely resembling gamma-Alumina forming almost randomly in an amorphous matrix, and with increasing frequency near the substrate/film interface. This nucleation is marked by the signature appearance of sharp (400) and (440) reflections and the formation of a diffuse diffraction halo with an outer maximal radius of approximate to 0.23 nm enveloping the direct beam. The microstructure then evolves by a cluster-coalescence growth mechanism suggestive of swift nucleation and sluggish diffusional kinetics, while locally the Al ions redistribute slowly from chemisorbed and tetrahedral sites to higher anion coordinated sites. Chemical state plots constructed from XPS data and simple calculations of the diffraction patterns from hypothetically distorted lattices suggest that the true origins of the diffuse diffraction halo are probably related to a complex change in the electronic structure spurred by the a-gamma transformation rather than pure structural disorder. Concurrent to crystallization within the film, a substantially thick interfacial reaction zone also builds up at the film/substrate interface with the excess Al acting as a cationic source. (C) 2015 AIP Publishing LLC.
Determination of band offsets at the Al:ZnO/Cu2SnS3 interface using X-ray photoelectron spectroscopy
Resumo:
The Al:ZnO/Cu2SnS3 semiconductor heterojunction was fabricated. The structural and optical properties of the semiconductor materials were studied. The band offset at the Al:ZnO/Cu2SnS3 heterojunction was studied using X-ray photoelectron spectroscopy technique. From the measurement of the core level energies and valence band maximum of the constituent elements, the valence band offset was calculated to be -1.1 +/- 0.24 eV and the conduction band offset was 0.9 +/- 0.34 eV. The band alignment at the heterojunction was found to be of type-I. The study of Al:ZnO/Cu2SnS3 heterojunction is useful for solar cell applications. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
The crystal structures of nine peptides containing gamma(4)Val and gamma(4)Leu are described. The short sequences Boc-gamma(4)(R)Val](2)-OMe 1, Boc-gamma(4)(R)Val](3)-NHMe 2 and Boc-gamma(4)(S)Val-gamma(4)(R)Val-OMe 3 adopt extended apolar, sheet like structures. The tetrapeptide Boc-gamma(4)(R)Val](4)-OMe 4 adopts an extended conformation, in contrast to the folded C-14 helical structure determined previously for Boc-gamma(4)(R)Leu](4)-OMe. The hybrid alpha gamma sequence Boc-Ala-gamma(4)(R)Leu](2)-OMe 5 adopts an S-shaped structure devoid of intramolecular hydrogen bonds, with both alpha residues adopting local helical conformations. In sharp contrast, the tetrapeptides Boc-Aib-gamma(4)(S)Leu](2)-OMe 6 and Boc-Leu-gamma(4)(R)Leu](2)-OMe 7 adopt folded structures stabilized by two successive C-12 hydrogen bonds. gamma(4)Val residues have also been incorporated into the strand segments of a crystalline octapeptide, Boc-Leu-gamma(4)(R)Val-Val-(D)Pro-Gly-Leu-gamma(4)(R)Val-Val-OMe 8. The gamma gamma delta gamma tetrapeptide containing gamma(4)Val and delta(5)Leu residues adopts an extended sheet like structure. The hydrogen bonding pattern at gamma residues corresponds to an apolar sheet, while a polar sheet is observed at the lone delta residue. The transition between folded and extended structures at gamma residues involves a change of the torsion angle from the gauche to the trans conformation about the C-beta-C-alpha bond.
Resumo:
Experimental charge density analysis combined with the quantum crystallographic technique of X-ray wavefunction refinement (XWR) provides quantitative insights into the intra-and intermolecular interactions formed by acetazolamide, a diuretic drug. Firstly, the analysis of charge density topology at the intermolecular level shows the presence of exceptionally strong interaction motifs such as a DDAA-AADD (D-donor, A-acceptor) type quadruple hydrogen bond motif and a sulfonamide dimer synthon. The nature and strength of intra-molecular S center dot center dot center dot O chalcogen bonding have been characterized using descriptors from the multipole model (MM) and XWR. Although pure geometrical criteria suggest the possibility of two intra-molecular S center dot center dot center dot O chalcogen bonded ring motifs, only one of them satisfies the ``orbital geometry'' so as to exhibit an interaction in terms of an electron density bond path and a bond critical point. The presence of `s-holes' on the sulfur atom leading to the S center dot center dot center dot O chalcogen bond has been visualized on the electrostatic potential surface and Laplacian isosurfaces close to the `reactive surface'. The electron localizability indicator (ELI) and Roby bond orders derived from the `experimental wave function' provide insights into the nature of S center dot center dot center dot O chalcogen bonding.
Resumo:
Mesophase organization of molecules built with thiophene at the center and linked via flexible spacers to rigid side arm core units and terminal alkoxy chains has been investigated. Thirty homologues realized by varying the span of the spacers as well as the length of the terminal chains have been studied. In addition to the enantiotropic nematic phase observed for all the mesogens, the increase of the spacer as well as the terminal chain lengths resulted in the smectic C phase. The molecular organization in the smectic phase as investigated by temperature dependent X-ray diffraction measurements revealed an interesting behavior that depended on the length of the spacer vis-a-vis the length of the terminal chain. Thus, a tilted interdigitated partial bilayer organization was observed for molecules with a shorter spacer length, while a tilted monolayer arrangement was observed for those with a longer spacer length. High-resolution solid state C-13 NMR studies carried out for representative mesogens indicated a U-shape for all the molecules, indicating that intermolecular interactions and molecular dynamics rather than molecular shape are responsible for the observed behavior. Models for the mesophase organization have been considered and the results understood in terms of segregation of incompatible parts of the mesogens combined with steric frustration leading to the observed lamellar order.
Resumo:
Detailed investigation of the chemical states and local atomic environment of Ni and Zn in the two-phase composites of Zn1-xNixO/NiO was reported. The X-ray photoelectron spectra of both Ni-2p and Zn-2p revealed the existence of a doublet with spin-orbit splitting approximate to 17.9 and 23.2eV, respectively confirming the divalent oxidation state of both Ni and Zn. However, the samples fabricated under oxygen-rich conditions exhibit significant difference in the binding energy approximate to 18.75eV between the 2p3/2 and 2p1/2 states of Ni. The shift in the satellite peaks of Ni-2p with increasing the Ni composition x within the Zn1-xNixO/NiO matrix signifies the attenuation of nonlocal screening because of reduced site occupancy of two adjacent Zn ions. The temperature dependence of X-ray diffraction analysis reveals a large distortion in the axial-rhombohedral angle for oxygen-rich NiO. Conversely, no significant distortion was noticed in the NiO system present as a secondary phase within Zn1-xNixO. Nevertheless, the unit-cell volume of both wurtzite h.c.p. Zn1-xNixO and f.c.c. NiO exhibits an anomalous behavior between 150 and 300 degrees C. The origin of such unusual change in the unit-cell volume was discussed in terms of oxygen stoichiometry.
Resumo:
Soil shrinkage curve represents a decrease of total porosity or an increase of bulk density with water loss. However, our knowledge of the dynamics of pores and their geometry during soil shrinkage is scarce, partially due to lack of reliable methods for determining soil pores in relation to change in soil water. This study aimed to investigate the dynamics of macropores (>30 mu m) of paddy soils during shrinkage. Two, paddy soils, which were sampled from one paddy field cultivated for 20 years (YPF) and the other one for over 100 years (OPF), represented difference in crack geometry in the field. Macropore parameters (volume, connectivity, and orientation of pores) and soil shrinkage parameters were determined on the same undisturbed soil cores by X-ray microtomography and shrinkage curve, respectively. Macroporosity was on average four times larger in the YPF than in the OPF whereas the shrinkage capacity was lower in the YPF as compared to the OPF (0.09 vs. 0.15 COLE). Soil shrinkage increased the volume of pores by 3.7% in the YPF and by 1.6% in the OPF as well as their connectivity. The formation of macropores occurred mostly in the proportional shrinkage phase. As a result, the slope of the proportional shrinkage phase was smaller in the YPF (0.65) than in the OPF (0.89). New macropores were cracks and extended pre-existing pores in the range of 225-1215 pm size without any preferential orientation. This work provides image evidences that in paddy soils with high shrinkage capacity more macropores are generated in the soil presenting a smaller proportional shrinkage slope. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Cu2SnS3 thins films were deposited onto In2O3: Sn coated soda lime glass substrates by spin coating technique. The films have been structurally characterized using x-ray Diffraction (XRD) and Atomic Force Microscopy (AFM). The morphology of the films was studied using Field Emission Scanning Electron Microscopy (FESEM). The optical properties of the films were determined using UV-vis-NIR spectrophotometer. The electrical properties were measured using Hall effect measurements. The energy band offsets at the Cu2SnS3/In2O3: Sn interface were calculated using x-ray photoelectron spectroscopy (XPS). The valence band offset was found to be -3.4 +/- 0.24 eV. From the valence band offset value, the conduction band offset is calculated to be -1.95 +/- 0.34 eV. The energy band alignment indicates a type-II misaligned heterostructure formation.
Resumo:
We study the diffuse X-ray luminosity (L-X) of star-forming galaxies using two-dimensional axisymmetric hydrodynamical simulations and analytical considerations of supernovae-(SNe-) driven galactic outflows. We find that the mass loading of the outflows, a crucial parameter for determining the X-ray luminosity, is constrained by the availability of gas in the central star-forming region, and a competition between cooling and expansion. We show that the allowed range of the mass loading factor can explain the observed scaling of L-X with star formation rate (SFR) as L-X alpha SFR2 for SFR greater than or similar to 1 M-circle dot yr(-1), and a flatter relation at low SFRs. We also show that the emission from the hot circumgalactic medium (CGM) in the halo of massive galaxies can explain the large scatter in the L-X-SFR relation for low SFRs (less than or similar to few M-circle dot yr(-1)). Our results suggest that galaxies with small SFRs and large diffuse X-ray luminosities are excellent candidates for the detection of the elusive CGM.
Resumo:
Cu2SnS3 thins films were deposited onto In2O3: Sn coated soda lime glass substrates by spin coating technique. The films have been structurally characterized using x-ray Diffraction (XRD) and Atomic Force Microscopy (AFM). The morphology of the films was studied using Field Emission Scanning Electron Microscopy (FESEM). The optical properties of the films were determined using UV-vis-NIR spectrophotometer. The electrical properties were measured using Hall effect measurements. The energy band offsets at the Cu2SnS3/In2O3: Sn interface were calculated using x-ray photoelectron spectroscopy (XPS). The valence band offset was found to be -3.4 +/- 0.24 eV. From the valence band offset value, the conduction band offset is calculated to be -1.95 +/- 0.34 eV. The energy band alignment indicates a type-II misaligned heterostructure formation.