395 resultados para Transient ice formation
Resumo:
Potassium titanyl phosphate single crystals were irradiated with 48 MeV lithium ions at fluences varying from 5×1012 to 1016 ions/cm2. The defects created in the crystal have been characterized using x-ray rocking curve measurements, optical transmittance, and photoluminescence spectroscopy. From x-ray rocking curve studies, the full width at half maximum for the irradiated samples was observed to increase, indicating lattice strain caused by the energetic ions. Optical transparency of these samples was found to decrease upon irradiation. The irradiated samples exhibited a broadband luminescence in the 700–900 nm region, for fluences above 5×1013 ions/cm2. The results indicate that ion-beam-induced optical effects in KTiOPO4 single crystals are very similar to the ones obtained for crystals with “gray tracks,” which are attributed to the electronic transitions in the Ti3+ levels.
Resumo:
Principles of design of composite instantaneous comparators (a combination of amplitude- and phase- comparison techniques) are laid out to provide directional, directional-reactance, nonoffset-resistance and conductance characteristices. The respective signals provided by the voltage transformer and the current transformer are directly used as relaying signals without resorting to any form of mixing. Phase shifts required, are obtained by using magnetic ferrite cores in a novel manner. Sampling units employing a combination of ferrite cores and semiconductor devices provide highly reliable designs. Special attention is paid to the choice of relaying signals, to eliminate the need for any synchronisation or modification and to avoid `image¿ characteristics. These factors have resulted in a considerable simplification of the practical circuitry. A thyristor AND circuit is employed in dual comparator units to provide the final tripping, and leads to a circuit which is much less sensitive to extraneous signals than a single-thyristor unit.
Resumo:
Computational studies of the transient stability of a synchronous machine connected to an infinite busbar by a double-circuit transmission line are used to illustrate the effect of relative phase-shift insertion between the machine and its associated power system. This method of obtaining a change in the effective rotor-excitation angle, and thereby the power transfer, is described, together with an outline of possible methods of implementation by a phase-shifting transformer in a power system.
Resumo:
The paper presents a graphical-numerical method for determining the transient stability limits of a two-machine system under the usual assumptions of constant input, no damping and constant voltage behind transient reactance. The method presented is based on the phase-plane criterion,1, 2 in contrast to the usual step-by-step and equal-area methods. For the transient stability limit of a two-machine system, under the assumptions stated, the sum of the kinetic energy and the potential energy, at the instant of fault clearing, should just be equal to the maximum value of the potential energy which the machines can accommodate with the fault cleared. The assumption of constant voltage behind transient reactance is then discarded in favour of the more accurate assumption of constant field flux linkages. Finally, the method is extended to include the effect of field decrement and damping. A number of examples corresponding to each case are worked out, and the results obtained by the proposed method are compared with those obtained by the usual methods.
Resumo:
The boronic acid (pS)-1,2-NpFcB(OH)(2) (1) was obtained by treatment of the lithiated species (pS)-1,2-NpFcLi with B(O(i)Pr)(3), followed by acidic workup; subsequent dehydration gave the enantiomerically pure boroxine [(pS)-1,2-NpFcBO](3) (2) in 49% isolated yield. Multinuclear and 2D NMR spectroscopies, single-crystal X-ray diffraction, and elemental analysis served to confirm the structure of 2. In the solid-state structure, all three of the naphthyl groups point in one direction and all of the ferrocenyl moieties are placed on the opposite face of the boroxine ring, which is also the preferred conformation in solution according to a (1)H, (1)H-NOESY experiment. Cyclic voltammetry revealed three separate reversible oxidation events, which suggests significant communication between the ferrocenyl moieties. These redox processes experience a cathodic shift upon addition of 4-dimethylaminopyridine (DMAP) as a Lewis base. The six-membered ring is opened upon treatment with hot CHCl(3)/MeOH to form the methoxy species (pS)-1,2-NpFcB(OH)(OMe) (3), which can be converted back to the cycle 2 by dissolution in wet CHCl(3), followed by column chromatography on silica gel.
Resumo:
Thin films of Ti62.5Si37.5 composition were deposited by the pulsed-laser ablation technique on single-crystal Nad substrates at room temperature and on ′single-crystal′ superalloy substrates at elevated temperatures. Both vapour and liquid droplets generated by pulsed-laser ablation of the target become quenched on the substrate. Amorphization had taken place in the process of quenching of vapour-plasma as well as small liquid droplets on NaCl substrates at room temperature. In addition to the formation of Ti5Si3, a metastable fcc phase (a 0 = 0.433 nm) also forms in micron-sized large droplets as well as in the medium-sized submicron droplets. The same metastable fcc phase nucleates during deposition from the vapour state at 500°C and at 600°C on a superalloy substrate as well as during crystallization of the amorphous phase. The evolution of the metastable fcc phase in the Ti-Si system during non-equilibrium processing is reported for the first time.
Resumo:
Reduced graphene oxide-lead dioxide composite is formed when EGO coated surface is electrochemically reduced along with lead ions in the solution. This composite has been shown to be an excellent material for low level detection of arsenic. Various functional groups present on EGO, in a wide pH range of 2-11, are responsible for the favorable interaction between metal ion and the modified electrode surface and subsequent trace level detection. X-ray photoelectron spectroscopy and Raman spectroscopic techniques confirm the formation of composite and its composition. Thin layer of lead dioxide along with reduced exfoliated graphene oxide has been shown to be responsible for the enhanced activity of the surface. The detection limit of arsenic is found to be 10 nM. This study opens up the possibility of using the composites for sensing applications and possibly simultaneous detection of arsenic and lead. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The ultrastructural functions of the electron-dense glycopeptidolipid-containing outermost layer (OL), the arabinogalactan-mycolic acid-containing electron-transparent layer (ETL), and the electron-dense peptidoglycan layer (PGL) of the mycobacterial cell wall in septal growth and constriction are not clear. Therefore, using transmission electron microscopy, we studied the participation of the three layers in septal growth and constriction in the fast-growing saprophytic species Mycobacterium smegmatis and the slow-growing pathogenic species Mycobacterium xenopi and Mycobacterium tuberculosis in order to document the processes in a comprehensive and comparative manner and to find out whether the processes are conserved across different mycobacterial species. A complete septal partition is formed first by the fresh synthesis of the septal PGL (S-PGL) and septal ETL (S-ETL) from the envelope PGL (E-PGL) in M. smegmatis and M. xenopi. The S-ETL is not continuous with the envelope ETL (E-ETL) due to the presence of the E-PGL between them. The E-PGL disappears, and the S-ETL becomes continuous with the E-ETL, when the OL begins to grow and invaginate into the S-ETL for constriction. However, in M. tuberculosis, the S-PGL and S-ETL grow from the E-PGL and E-ETL, respectively, without a separation between the E-ETL and S-ETL by the E-PGL, in contrast to the process in M. smegmatis and M. xenopi. Subsequent growth and invagination of the OL into the S-ETL of the septal partition initiates and completes septal constriction in M. tuberculosis. A model for the conserved sequential process of mycobacterial septation, in which the formation of a complete septal partition is followed by constriction, is presented. The probable physiological significance of the process is discussed. The ultrastructural features of septation and constriction in mycobacteria are unusually different from those in the well-studied organisms Escherichia coli and Bacillus subtilis.
Resumo:
Three-component self-assembly of a cis-blocked 90 degrees Pd(II) acceptor with a mixture of a tetraimidazole and a linear dipyridyl donor self-discriminated into unusual Pd-8 molecular swing (1) and Pd-6 molecular boat (2), which are characterized by single-crystal X-ray diffraction analysis; their ability to bind C-60 in solution is established by fluorescence titration.
Resumo:
During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the ``nonamer binding region,'' which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We report the formation omega phase in the remelted layers during laser cladding and remelting of quasicrystal forming Al65Cu23.3Fe11.7 alloy on pure aluminum. The omega phase is absent in the clad layers. In the remelted layer, the phase nucleates at the periphery of the primary icosahedral phase particles. A large number of omega phase particles forms enveloping the icosahedral phase growing into aluminum rich melt, which solidify as alpha-Al solid solution. On the other side it develops an interface with aluminum. A detailed transmission electron microscopic analysis shows that omega phase exhibits orientation relationship with icosahedral phase. The composition analysis performed using energy dispersive x-ray analyzer suggests that this phase has composition higher aluminum than the icosahedral phase. The analysis of the available phase diagram information indicates that the present results represent large departure from equilibrium conditions. A possible scenario of the evolution of the omega phase has been suggested.
Resumo:
alpha-Synuclein aggregation is centrally implicated in Parkinson's disease (PD). It involves multi-step nucleated polymerization process via the formation of dimers, soluble toxic oligomers and insoluble fibrils. In the present study, we synthesized a novel compound viz., Curcumin-glucoside (Curc-gluc), a modified form of curcumin and studied its anti-aggregating potential with alpha-synuclein. Under aggregating conditions in vitro, Curc-gluc prevents oligomer formation as well as inhibits fibril formation indicating favorable stoichiometry for inhibition. The binding efficacies of Curc-gluc to both alpha-synuclein monomeric and oligomeric forms were characterized by micro-calorimetry. It was observed that titration of Curc-gluc with alpha-synuclein monomer yielded very low heat values with low binding while, in case of oligomers, Curc-gluc showed significant binding. Addition of Curc-gluc inhibited aggregation in a dose-dependent manner and enhanced alpha-synuclein solubility, which propose that Curc-gluc solubilizes the oligomeric form by disintegrating preformed fibrils and this is a novel observation. Overall, the data suggest that Curc-gluc binds to alpha-synuclein oligomeric form and prevents further fibrillization of alpha-synuclein; this might aid the development of disease modifying agents in preventing or treating PD.
Resumo:
Tribological interaction often generates new structures and materials which form the interface between the sliding pair. The new material designated tribofilm here may be protective or tribologically deleterious. The tribofilm plays a major role in determining the friction and wear of the interaction. Here, we give three examples: mechanically mixed, chemically generated and thermally activated, of tribofilms formed in three different tribological systems and speculate on the mechanism of their formation.
Resumo:
The variation in temperature and concentration plays a crucial role in predicting the final microstructure during solidification of a binary alloy. Most of the experimental techniques used to measure concentration and temperature are intrusive in nature and affect the flow field. In this paper, the main focus is laid on in-situ, non-intrusive, transient measurement of concentration and temperature during the solidification of a binary mixture of aqueous ammonium chloride solution (a metal-analog system) in a top cooled cavity using laser based Mach-Zehnder Interferometric technique. It was found from the interferogram, that the angular deviation of fringe pattern and the total number of fringes exhibit significant sensitivity to refractive index and hence are functions of the local temperature and concentration of the NH4Cl solution inside the cavity. Using the fringe characteristics, calibration curves were established for the range of temperature and concentration levels expected during the solidification process. In the actual solidification experiment, two hypoeutectic solutions (5% and 15% NH4Cl) were chosen. The calibration curves were used to determine the temperature and concentration of the solution inside the cavity during solidification of 5% and 15% NH4Cl solution at different instants of time. The measurement was carried out at a fixed point in the cavity, and the concentration variation with time was recorded as the solid-liquid interface approached the measurement point. The measurement exhibited distinct zones of concentration distribution caused by solute rejection and Rayleigh Benard convection. Further studies involving flow visualization with laser scattering confirmed the Rayleigh Benard convection. Computational modeling was also performed, which corroborated the experimental findings. (C) 2011 Elsevier Ltd. All rights reserved.