508 resultados para TEMPERATURE RANGE 0065-0273K
Resumo:
Using a dynamic materials model, processing and instability maps have been developed for near-alpha titanium alloy 685 in the temperature range 775-1025 degrees C and strain-rate range of 0.001-10 s(-1) to optimise its hot workability. The alloy's beta-transus temperature lies at about 1020 degrees C. The material undergoes superplasticity with a peak efficiency of 80% at 975 degrees C and 0.001 s(-1), which are the optimum parameters for alpha-beta working. The occurrence of superplasticity is attributed to two-phase microduplex structure, higher strain-rate sensitivity, low flow stress and sigmoidal variation between log flow stress and log strain rate. The material also exhibits how localisation due to adiabatic shear-band formation up to its beta-transus temperature with strain rates greater than 0.02 s(-1) and thus cracking along these regions. (C) 1997 Published by Elsevier Science S.A.
Resumo:
The reactivation kinetics of passivated boron accepters in hydrogenated silicon during zero bias annealing in the temperature range of 65-130 degrees C are reported, For large annealing times and high annealing temperatures, the reactivation process follows second-order kinetics and is rate limited by a thermally activated <(H)over tilde (2)> complex formation process, For short annealing times and low annealing temperatures, the reactivation rate is found to be larger than that due to <(H)over tilde (2)> complex formation alone. We conclude that the faster reactivation is caused by the diffusion of the liberated hydrogen atoms into the bulk as well as <(H)over tilde (2)> complex formation. The effective diffusion coefficient of hydrogen is measured and found to obey the Arrhenius relation with an activation energy (1.41 +/- 0.1) eV. (C) 1997 American Institute of Physics.
Resumo:
The methane-hydrogen gas equilibration technique has been used to measure the chemical potential of carbon associated with two three-phase fields of the system U-W-C in the temperature range 973 to 1173 K. By combining the values of the chemical potential of carbon in the three-phase fields UC + W + UWC1.75 and UC + UWC1.75 + UWC2 Obtained in this study with the data on the Gibbs energy of formation of UC available in the literature, expressions for the Gibbs energies of formation of the two ternary carbides were derived: Delta(f)G degrees [UWC1.75] = -131, 600 - 300 T (+/-8000) J mol(-1) Delta(f)G degrees [UWC2] = -144, 800 - 32.0 T (+/- 10,000) J mol(-1) Although estimates of Gibbs energies of formation of the two ternary carbides TSWC1.75 and UWC2 have been reported, there have been no previous experimental determinations of thermodynamic properties of these compounds.
Resumo:
Electrical conductivity and dielectric relaxation studies with a wide range of compositions of lithium ion conducting glasses belonging to the ternary glass system Li2SO4-Li2O-B2-O3- have been carried out over the temperature range 150-450 K and between 10 - 10(7) Hz. DC conductivities exhibit two different activation regions. This seems to suggest the presence of a cluster tissue texture in these glasses with weakly ordered clusters of Li2SO4 and lithium berates being held together by a truly amorphous tissue of the same average composition as clusters. AC conductivity behaviour of these glasses has been analysed using both power law and stretched exponential relaxation functions. The variation of the power law exponent s and the stretched exponent beta with temperature seems to be consistent with the presence of a cluster tissue texture in these glasses.
Resumo:
Asymmetrically dibridged dicopper(II) complexes, [Cu-2(OH)(O2CC6H4-p-Me)(tmen)(2)(H2O)](ClO4)(2) (1) and [Cu-2(OH)(O2CC6H4-p-OMe)(tmen)(2)(H2O)](ClO4)(2) (2) (tmen = N,N,N',N'-tetramethylethane-1,2-diamine), were prepared and structurally characterized. Complex 1 crystallizes in the monoclinic space group P2(1)/a with a = 17.718(2), b = 9.869(1), c = 19.677(2) Angstrom, beta = 115.16(1)degrees, V = 3114.3(6) Angstrom(3) and Z = 4. The structure was refined to R(wR(2)) = 0.067(0.178). Complex 2 crystallizes in the monoclinic space group P2(1)/a with a = 17.695(3), b = 9.574(4), c = 20.104(2) Angstrom, beta = 114.18(1)degrees, V = 3107(1) Angstrom(3) and Z = 4. The final residuals are R(wR(2)) = 0.067(0.182). The complexes have a [Cu-2(mu-OH)(mu-OH)(mu-O2CAr)](2+) core with tmen Ligands occupying the terminal sites of the core. In addition, one copper is axially bound to a water molecule. The Cu ... Cu distances and the Cu-OH Cu angles in the core are 3.394(1) Angstrom, 124.4(2)degrees for 1 and 3.374(1) Angstrom, 123.3(3)degrees for 2. The complexes show axial X-band EPR spectral features in methanol glass at 77 K giving g(perpendicular to) = 2.02, g(parallel to) = 2.3 (A(parallel to) = 165 x 10(-4) cm(-1)) and a visible band near similar to 630 nm in methanol. The complexes are weakly antiferromagnetic. A theoretical fit of the magnetic susceptibility data in the temperature range 40-295 K gives -J = 10 cm(-1), g = 2.05 for 1 and -J = 10 cm(-1), g = 2.0 for 2. Plots of -2J versus the Cu-OH-Cu angle (phi) in this class of asymmetrically dibridged dicopper(II) complexes having d(x2-y2)-d(x2-y2) magnetic orbitals show a linear magneto-structural correlation: -2J(cm(-1)) = 11.48 phi(deg) - 1373.
Resumo:
Modification of the room temperature phase (IV-III) of ammonium nitrate (AN) has been attempted using a variety of potassium salts namely, KF, KCl, KI, KNO3, K2CO3, K2SO4, KSCN and K2Cr2O7. No phase transition was observed when AN containing 1-2% by mass of these potassium salts is heated from room temperature (25 degrees C) onwards in DTA and DSC scans, but the linear expansion due to phase transition was still observable in TMA measurements. Complete arrest of the linear expansion occurs only when a higher concentration of the additive is used. Similarly, in thermal cycling experiments, complete phase modification in the temperature range -80 to 100 degrees C occurs only with a higher percentage of the potassium salt. The extent of modification, however, is found to be dependent both on the concentration, and the type of the anion. Potassium dichromate when used as an additive modifies the phase as well as the decomposition pattern of AN.
Resumo:
The polynuclear copper(II) complex [{Cu2L(O2CC5H4N)}. C2H5OH](x) (1), where H3L is a 1∶2 Schiff base derived from 1,3-diaminopropan-2-ol and salicylaldehyde, has been prepared and structurally characterized. The structure consists of a one-dimensional zigzag chain in which the binuclear [Cu2L](+) units are covalently linked by isonicotinate ligands to give a syndiotactic arrangement of the copper ions protruding outside the chain. In the basic unit, the copper(II) centres are bridged by an alkoxo and a carboxylato ligand, giving a Cu ... Cu distance of 3.492(3) Angstrom and a Cu-O-Cu angle of 130.9(2)degrees. While one copper centre has a square-planar geometry, the other copper is square-pyramidal with the pyridine nitrogen being the axial ligand. The visible electronic spectrum of 1 shows a broad d-d band at 615 nm. The complex shows a rhombic X-band EPR spectral pattern in the polycrystalline phase at 77 K. Magnetic susceptibility measurements in the temperature range 22 to 295 K demonstrate the antiferromagnetic behaviour of 1. A theoretical fit to the magnetic data is based on a model assuming 1 as an equimolar mixture of copper atoms belonging to an antiferromagnetically coupled one-dimensional Heisenberg chain with the other copper atoms outside the chain behaving like paramagnetic centres.
Resumo:
Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (sigma = K-1 epsilon(n1)) at higher (> 623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower (< 623 K) temperatures. The Ludwigson modification of Hollomon's equation, sigma = K-1 epsilon(n1) + exp (K-2 + n(2) epsilon), was found to describe the flow curve. In general, the flow parameters n(1), K-1, n(2) and K-2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n(1) Value increased and the K-1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of nl with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n(1).
Resumo:
The chemical potentials of CaO in the two-phase fields Fe2O3 + CaFe2O4 and CaFe2O4 + Ca2Fe2O5 of the pseudobinary system CaO - Fe2O3 have been measured in the temperature range from 975 to 1275 K, relative to pure CaO as the reference state, using solid state galvanic cells incorporating single-crystal CaF2 as the solid electrolyte. The cell was operated under pure oxygen at ambient pressure. The standard Gibbs energies of formation of calcium ferrites, CaFe2O4 and Ca2Fe2O5, were derived from the reversible emfs. The results can be summarized by the following equations:CaO + Fe2O3 --> CaFe2O4;Delta G degrees = - 37,480 + 1.16 T (+/- 250) J/mol 2 CaO + Fe2O3 --> Ca2Fe2O5;Delta G degrees = - 45, 280 - 13.51 T (+/- 275) J/mol These values are compared with thermodynamic data reported in the literature. The results of this study are in excellent agreement with heat capacity data, and in reasonable agreement with earlier measurements of enthalpy and Gibbs energy of formation, but suggest significant revision of enthalpies of formation of calcium ferrites given in current thermodynamic compilations.
Resumo:
Lanthanum doped lead titanate (PLT) thin films were identified as the most potential candidates for the pyroelectric and memory applications. PLT thin films were deposited on Pt coated Si by excimer laser ablation technique. The polarization behavior of PLT thin films has been studied over a temperature range of 300 K to 550 K. A universal power law relation was brought into picture to explain the frequency dependence of ac conductivity. At higher frequency region ac conductivity of PLT thin films become temperature independent. The temperature dependence of ac conductivity and the relaxation time is analyzed in detail. The activation energy obtained from the ac conductivity was attributed to the shallow trap controlled space charge conduction in the bulk of the sample. The impedance analysis for PLT thin films were also performed to get insight of the microscopic parameters, like grain, grain boundary, and film-electrode interface etc. The imaginary component of impedance Z" exhibited different peak maxima at different temperatures. Different types of mechanisms were analyzed in detail to explain the dielectric relaxation behavior in the PLT thin films.
Resumo:
The crystal structure, thermal expansion and electrical conductivity of the solid solution Nd0.7Sr0.3Fe1-xCoxO3 for 0 less than or equal to x less than or equal to 0.8 were investigated. All compositions had the GdFeO3-type orthorhombic perovskite structure. The lattice parameters were determined at room temperature by X-ray powder diffraction (XRPD). The pseudo-cubic lattice constant decreased continuously with x. The average linear thermal expansion coefficient (TEC) in the temperature range from 573 to 973 K was found to increase with x. The thermal expansion curves for all values of x displayed rapid increase in slope at high temperatures. The electrical conductivity increased with x for the entire temperature range of measurement. The calculated activation energy values indicate that electrical conduction takes place primarily by the small polaron hopping mechanism. The charge compensation for the divalent ion on the A-site is provided by the formation of Fe4+ ions on the B-site (in preference to Co4+ ions) and vacancies on the oxygen sublattice for low values of x. The large increase in the conductivity with x in the range from 0.6 to 0.8 is attributed to the substitution of Fe4+ ions by Co4+ ions. The Fe site has a lower small polaron site energy than Co and hence behaves like a carrier trap, thereby drastically reducing the conductivity. The non-linear behaviour in the dependence of log sigmaT with reciprocal temperature can be attributed to the generation of additional charge carriers with increasing temperature by the charge disproportionation of Co3+ ions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Deposition of Al2O3 coatings by CVD is of importance because they are often used as abrading material in cemented carbide cutting tools. The conventionally used CVD process for Al2O3 involves the corrosive reactant AlCl3. In this paper, we report on the thermal characterisation of the metalorganic precursors namely aluminium tristetramethyl-heptanedionate [Al(thd)(3)] and aluminium tris-acetylacetonate [Al(acac)(3)] and their application to the CVD of Al2O3 films. Crystalline Al2O3 films were deposited by MOCVD at low temperatures by the pyrolysis of Al(thd)(3) and Al(acac)(3). The films were deposited on a TiN-coated tungsten carbide (TiN/WC) and Si(100) substrates in the temperature range 500-1100degreesC. The as-deposited films were characterised by x-ray diffraction, optical microscopy, scanning and transmission electron microscopy, Auger electron spectroscopy. The observed crystallinity of films grown at low temperatures, their microstructure, and composition may be interpreted in terms of a growth process that involves the melting of the metalorganic precursor on the hot growth surface.
Resumo:
Temperature dependent Mossbauer measurements are done on the samples of La1- xCaxMn1-y (FeyO3)-Fe-57 with x=0 and 0.25, and y=0.01. With decreasing temperature, the specimen with x=0.25 shows a paramagnetic to ferromagnetic transition around 175 K. In the specimen x=0.0, the temperature dependence of both the center shift (delta) and the recoilless fraction (f) can be fitted very well with the Debye theory with a theta(D)=320+/-50 K. But for the specimens with x=0.25, f and delta show distinct deviations from the Debye behavior in the temperature range in which the resistivity shows a sharp decrease. Dips observed in both the f and delta around the transition temperature suggest that the Jahn-Teller distortion observed in these systems is dynamic in nature.
Resumo:
This paper presents adsorption isotherms for HFC-134a on activated charcoal, in the temperature range of 273-353 K and for pressures up to 0.65 MPa, measured using the volumetric method. Three samples of charcoals with widely varying surface areas were chosen. The shapes of the isotherms,obtained from the experimental data were similar in all cases and comparable to those reported in the literature. Adsorption parameters were evaluated from the isotherms using the Dubinin-Astakhov (DA) equation. The concentration dependence of the isosteric enthalpies of adsorption is extracted from the data.
Resumo:
Studies on the phase relations in the system Nd-Mn-O at 1223 K showed two stable ternary compounds, NdMnO3 and NdMn2O5. An isothermal section of the ternary phase diagram for the system Nd-Mn-O was constructed based on phase analysis of samples quenched after equilibration using XRPD and EDS. An advanced version of the solid-state cell incorporating a buffer electrode was used to determine the Gibbs energies of decomposition of NdMnO3 and NdMn2O5 in the temperature range from 925 to 1400 K. Pure oxygen gas at 0.1 MPa was used as the reference electrode, and yttria-stabilized zirconia as the solid electrolyte. The buffer electrode was designed to prevent polarization of the three-phase electrode and ensure accurate data. The measured oxygen potential corresponding to the reaction,2 Nd2O3 + 4 MnO + O-2 --> 4 NdMnO3 can be represented by the equation,Amu(o2) / J.mol(-1) (+/-580) = -523 960 + 170.96 (T/K)Similarly, for the formation of NdMn2O5 according to the reaction,3 NdMnO3 + Mn3O4 + O-2 --> 3 NdMn2O5 Amu(o2) / J.mol(-1) (+/-660) = - 269 390 + 181.74 (T/K) (C) 2002 Elsevier Science Ltd. All rights reserved.