433 resultados para Sandia method
Resumo:
A method of evaluating the transient electrical response of a solion diode when excited by different current stimuli is given. This method is extended to obtain the transient response of the solion when connected in a circuit. To illustrate the utility of this method a circuit incorporating a solion diode has been analyzed.
Resumo:
A finite element method for solving multidimensional population balance systems is proposed where the balance of fluid velocity, temperature and solute partial density is considered as a two-dimensional system and the balance of particle size distribution as a three-dimensional one. The method is based on a dimensional splitting into physical space and internal property variables. In addition, the operator splitting allows to decouple the equations for temperature, solute partial density and particle size distribution. Further, a nodal point based parallel finite element algorithm for multi-dimensional population balance systems is presented. The method is applied to study a crystallization process assuming, for simplicity, a size independent growth rate and neglecting agglomeration and breakage of particles. Simulations for different wall temperatures are performed to show the effect of cooling on the crystal growth. Although the method is described in detail only for the case of d=2 space and s=1 internal property variables it has the potential to be extendable to d+s variables, d=2, 3 and s >= 1. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The symmetrized density matrix renormalization group method is used to study linear and nonlinear optical properties of free base porphine and metalloporphine. Long-range interacting model, namely, Pariser-Parr-Pople model is employed to capture the quantum many-body effect in these systems. The nonlinear optical coefficients are computed within the correction vector method. The computed singlet and triplet low-lying excited state energies and their charge densities are in excellent agreement with experimental as well as many other theoretical results. The rearrangement of the charge density at carbon and nitrogen sites, on excitation, is discussed. From our bond order calculation, we conclude that porphine is well described by the 18-annulenic structure in the ground state and the molecule expands upon excitation. We have modeled the regular metalloporphine by taking an effective electric field due to the metal ion and computed the excitation spectrum. Metalloporphines have D(4h) symmetry and hence have more degenerate excited states. The ground state of metalloporphines shows 20-annulenic structure, as the charge on the metal ion increases. The linear polarizability seems to increase with the charge initially and then saturates. The same trend is observed in third order polarizability coefficients. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3671946]
Resumo:
The study focuses on probabilistic assessment of the internal seismic stability of reinforced soil structures (RSS) subjected to earthquake loading in the framework of the pseudo-dynamic method. In the literature, the pseudo-static approach has been used to compute reliability indices against the tension and pullout failure modes, and the real dynamic nature of earthquake accelerations cannot be considered. The work presented in this paper makes use of the horizontal and vertical sinusoidal accelerations, amplification of vibrations, shear wave and primary wave velocities and time period. This approach is applied to quantify the influence of the backfill properties, geosynthetic reinforcement and characteristics of earthquake ground motions on reliability indices in relation to the tension and pullout failure modes. Seismic reliability indices at different levels of geosynthetic layers are determined for different magnitudes of seismic acceleration, soil amplification, shear wave and primary wave velocities. The results are compared with the pseudo-static method, and the significance of the present methodology for designing reinforced soil structures is discussed.
Resumo:
The W, V, Ce, Zr, Fe, and Cu metal ion substituted nanocrystalline anatase TiO2 was prepared by solution combustion method and characterized by XRD, Raman, BET, EPR, XPS, IR TGA, UV absorption, and photoluminescence measurements. The structural studies indicate that the solid solution formation was limited to a narrow range of concentrations of the dopant ions. The photocatalytic degradation of 4-nitrophenol under UV and solar exposure was investigated with Ti1-xMxO2±δ. The degradation rates of 4-nitrophenol with these catalysts were lesser than the degradation rates of 4-nitrophenol with undoped TiO2 both with UV exposure and solar radiation. However, the photocatalytic activities of most metal ion doped TiO2 are higher than the activity of the commercial TiO2, Degussa P25. The decrease in photocatalytic activity is correlated with decrease in photoluminescence due to electron states of metal ions within the band gap of TiO2.
Resumo:
The Rotatary Bridgman method was used to grow ternary InSb(1-x)SBix, crystals. In this method the ampoule was subjected to reversible rotation at a rate of 60rpm. High quality crystals of 8mm diameter and 25mm length were grown with 6.5 atomic percentage of Bi. The grown crystals were characterized employing various techniques such as energy dispersive spectroscopy, x-ray diffraction, differential scanning calorimetery, infrared spectroscopy and Hall measurement.
Resumo:
The stability of slopes is a major problem in geotechnical engineering. Of the methods available for the analysis of soil slopes such as limit equilibrium methods, limit analysis and numerical methods such as FEM and FDM, limit equilibrium methods are popular and generally used, owing to their simplicity in formulation and in evaluating the overall factor of safety of slope. However limit equilibrium methods possess certain disadvantages. They do not consider whether the slope is an embankment or natural slope or an excavation and ignore the effect of incremental construction, initial stress, stress strain behavior etc. In the work reported in this paper, a comparative study of actual state of stress and actual factor of safety and Bishop's factor of safety is performed. The actual factor of safety is obtained by consideration of contours of mobilised shear strains. Using Bishop's method of slices, the critical slip surfaces of a number of soil slopes with different geometries are determined and both the factors of safety are obtained. The actual normal stresses and shear stresses are determined from finite difference formulation using FLAG (Fast Lagrangian Analysis of Continuaa) with Mohr-Coulomb model. The comparative study is performed in terms of parameter lambda(c phi) (= gamma H tan phi/c). I is shown that actual factor of safety is higher than Bishop's factor of safety depending on slope angle and lambda(c phi).
Resumo:
Examination of experimental data of the modelled rockfill materials using parallel gradation technique has revealed that the plots of logarithm of strain at failure against logarithm of confining pressure are linear. Also, a trend of increase in failure strain with increase in confining pressure and maximum size of the particle have been observed. The approach presented in this paper highlights the prediction of volume change properties of rockfill materials over a range of confining pressures and particle sizes based on the results of only two tests carried out at two different confining pressures for a maximum particle size of modelled material with the use of parallel gradation technique. Two test approach and its application in modelling of rockfill materials to estimate its volume change behaviour is illustrated by means of a selected experimental data available in the literature.
Resumo:
ZnO:Al thin films were prepared on glass and silicon substrates by the sol-gel spin coating method. The x-ray diffraction (XRD) results showed that a polycrystalline phase with a hexagonal structure appeared after annealing at 400 degrees C for 1 h. The transmittance increased from 91 to about 93% from pure ZnO films to ZnO film doped with 1 wt% Al and then decreased for 2 wt% Al. The optical band gap energy increased as the doping concentration was increased from 0.5 wt% to 1 wt% Al. The metal oxide semiconductor (MOS) capacitors were fabricated using ZnO films deposited on silicon (100) substrates and electrical properties such as current versus voltage (I-V) and capacitance versus voltage (C-V) characteristics were studied. The electrical resistivity decreased and the leakage current increased with an increase of annealing temperature. The dielectric constant was found to be 3.12 measured at 1 MHz. The dissipation value for the film annealed at 300 degrees C was found to be 3.1 at 5 V. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A system for temporal data mining includes a computer readable medium having an application configured to receive at an input module a temporal data series and a threshold frequency. The system is further configured to identify, using a candidate identification and tracking module, one or more occurrences in the temporal data series of a candidate episode and increment a count for each identified occurrence. The system is also configured to produce at an output module an output for those episodes whose count of occurrences results in a frequency exceeding the threshold frequency.
Resumo:
A system for temporal data mining includes a computer readable medium having an application configured to receive at an input module a temporal data series having events with start times and end times, a set of allowed dwelling times and a threshold frequency. The system is further configured to identify, using a candidate identification and tracking module, one or more occurrences in the temporal data series of a candidate episode and increment a count for each identified occurrence. The system is also configured to produce at an output module an output for those episodes whose count of occurrences results in a frequency exceeding the threshold frequency.