359 resultados para SUPORTED LIQUID MEMBRANES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundnut Bud Necrosis Virus (GBNV) is a tripartite ambisense RNA plant virus that belongs to serogroup IV of Tospovirus genus. Non-Structural protein-m (NSm), which functions as movement protein in tospoviruses, is encoded by the M RNA. In this communication, we demonstrate that despite the absence of any putative transmembrane domain, GBNV NSm associates with membranes when expressed in E. coli as well as in N. benthamiana. Incubation of refolded NSm with liposomes ranging in size from 200-250 nm resulted in changes in the secondary and tertiary structure of NSm. A similar behaviour was observed in the presence of anionic and zwitterionic detergents. Furthermore, the morphology of the liposomes was found to be modified in the presence of NSm. Deletion of coiled coil domain resulted in the inability of in planta expressed NSm to interact with membranes. Further, when the C-terminal coiled coil domain alone was expressed, it was found to be associated with membrane. These results demonstrate that NSm associates with membranes via the C-terminal coiled coil domain and such an association may be important for movement of viral RNA from cell to cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new series of donor-acceptor-donor (D-A-D) type luminescent mesogens carrying 2-methoxy-3-cyanopyridine as a central core linked with variable alkoxy chain lengths (m = 6 and 8) as terminal substituents was synthesized and characterized using spectral methods. The newly synthesized molecules were subjected to single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), differential scanning calorimetric (DSC), polarizing optical microscopy (POM), and fluorescence emission studies in order to ascertain their mesogenic and photophysical properties. The SCXRD data on 4a and 4b reveal that the presence of short intermolecular contacts, viz. C-H center dot center dot center dot N, C-H center dot center dot center dot O, C-H center dot center dot center dot pi, and pi center dot center dot center dot pi interactions, is responsible for their crystal packing. The measured torsion angle values indicate that molecules possess distorted non-planar structure. The DSC, POM, and PXRD studies confirm that all the molecules show thermotropic liquid crystalline behaviour and exhibit rectangular columnar phase. Further, their UV-visible and fluorescence spectral studies reveal that the target molecules are luminescent displaying a strong absorption band in the range of 335-340 nm and a blue fluorescence emission band in the range of 395-425 nm (both in solution and film state) with good fluorescence quantum yields (10-49 %).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations of two-dimensional electron systems (2DES) have been achieved with two model experimental systems, covering two distinct, non-overlapping regimes of the 2DES phase diagram, namely the quantum liquid phase in semiconducting heterostructures and the classical phases observed in electrons confined above the surface of liquid helium. Multielectron bubbles in liquid helium offer an exciting possibility to bridge this gap in the phase diagram, as well as to study the properties of electrons on curved flexible surfaces. However, this approach has been limited because all experimental studies have so far been transient in nature. Here we demonstrate that it is possible to trap and manipulate multielectron bubbles in a conventional Paul trap for several hundreds of milliseconds, enabling reliable measurements of their physical properties and thereby gaining valuable insight to various aspects of curved 2DES that were previously unexplored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When quenched with liquid N-2, a room temperature liquid, 4-fluorobenzoyl chloride, generates a new crystalline form that appears to be polytypic to the previously reported form. The structural and energetic correlations between these forms trace a crystallization pathway of the compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal systems with competing interactions are known to exhibit a range of dynamically arrested states because of the systems' inability to reach its underlying equilibrium state due to intrinsic frustration. Graphene oxide (GO) aqueous dispersions constitute a class of 2D-anisotropic colloids with competing interactions long-range electrostatic repulsion, originating from ionized groups located on the rim of the sheets, and weak dispersive attractive interactions originating from the unoxidized graphitic domains. We show here that aqueous dispersions of GO exhibit a range of arrested states, encompassing fluid, glass, and gels that coexist with liquid-crystalline order with increasing volume fraction. These states can be accessed by varying the relative magnitudes of the repulsive and attractive forces. This can be realized by changing the ionic strength of the medium. We observe at low salt concentrations, where long-range electrostatic repulsion dominates, the formation of a repulsive Wigner glass, while at high salt concentrations, when attractive forces dominate, the formation of gels exhibits a nematic to columnar liquid-crystalline transition. The present work highlights how the chemical structure of GO hydrophilic ionizable groups and hydrophobic graphitic domains coexisting on a single sheet gives rise to a rich and complex array of arrested states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat transfer from a solid phase to an impinging non-isothermal liquid droplet is studied numerically. A new approach based on an arbitrary Lagrangian-Eulerian (ALE) finite element method for solving the incompressible Navier Stokes equations in the liquid and the energy equation within the solid and the liquid is presented. The novelty of the method consists in using the ALE-formulation also in the solid phase to guarantee matching grids along the liquid solid interface. Moreover, a new technique is developed to compute the heat flux without differentiating the numerical solution. The free surface and the liquid solid interface of the droplet are represented by a moving mesh which can handle jumps in the material parameter and a temperature dependent surface tension. Further, the application of the Laplace-Beltrami operator technique for the curvature approximation allows a natural inclusion of the contact angle. Numerical simulation for varying Reynold, Weber, Peclet and Biot numbers are performed to demonstrate the capabilities of the new approach. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, various strategies like amine terminated GO (GO-NH2), in situ formed polyethylene grafted GO (PE-g-GO) and their combinations with maleated PE (maleic anhydride grafted PE) were adopted to reactively compatibilize blends of low density polyethylene (LDPE) and polyethylene oxide (PEO). These blends were further explored to design porous, antibacterial membranes for separation technology and the flux and the resistance across the membranes were studied systematically. It was observed that GO-NH2 led to uniform dispersion of PEO in a PE matrix and further resulted in a significant improvement in the mechanical properties of the blends when combined with maleated PE. The efficiency of various compatibilizers was further studied by monitoring the evolution of morphology as a function of the annealing time. It was observed that besides rendering uniform dispersion of PEO in PE and improving the mechanical properties, GO-NH2 further suppresses the coalescence in the blends. As the melt viscosities of the phases differ significantly, there is a gradient in the morphology as also manifested from scanning acoustic microscopy. Hence, the membranes were designed by systematically reducing the thickness of the as-pressed samples to expose the core as the active area for flux calculations. Selected membranes were also tested for their antibacterial properties by inoculating E. coli culture with the membranes and imaging at different time scales. This study opens new avenues to develop PE based cost effective anti-microbial membranes for water purification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, various strategies like amine terminated GO (GO-NH2), in situ formed polyethylene grafted GO (PE-g-GO) and their combinations with maleated PE (maleic anhydride grafted PE) were adopted to reactively compatibilize blends of low density polyethylene (LDPE) and polyethylene oxide (PEO). These blends were further explored to design porous, antibacterial membranes for separation technology and the flux and the resistance across the membranes were studied systematically. It was observed that GO-NH2 led to uniform dispersion of PEO in a PE matrix and further resulted in a significant improvement in the mechanical properties of the blends when combined with maleated PE. The efficiency of various compatibilizers was further studied by monitoring the evolution of morphology as a function of the annealing time. It was observed that besides rendering uniform dispersion of PEO in PE and improving the mechanical properties, GO-NH2 further suppresses the coalescence in the blends. As the melt viscosities of the phases differ significantly, there is a gradient in the morphology as also manifested from scanning acoustic microscopy. Hence, the membranes were designed by systematically reducing the thickness of the as-pressed samples to expose the core as the active area for flux calculations. Selected membranes were also tested for their antibacterial properties by inoculating E. coli culture with the membranes and imaging at different time scales. This study opens new avenues to develop PE based cost effective anti-microbial membranes for water purification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the formation of dendritic hierarchical structures of alpha-Fe2O3 and nanostructures of Fe2O3 by the simple liquid-liquid interface method. The morphology of thin films determined by high-resolution scanning electron microscopy shows nanorods, nanosheets and dendritic Fe2O3. The identification of phases of iron oxide structures is carried out by using XRD and XPS studies. XRD and XPS measurements point out the highly crystalline dendritic alpha-Fe2O3 phase and the mixed phase of alpha- and gamma-Fe2O3 nanostructures. The magnetic measurement also suggests the presence of a mixed phase in the sample grown for 72 hours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials with widely varying molecular topologies and exhibiting liquid crystalline properties have attracted considerable attention in recent years. C-13 NMR spectroscopy is a convenient method for studying such novel systems. In this approach the assignment of the spectrum is the first step which is a non-trivial problem. Towards this end, we propose here a method that enables the carbon skeleton of the different sub-units of the molecule to be traced unambiguously. The proposed method uses a heteronuclear correlation experiment to detect pairs of nearby carbons with attached protons in the liquid crystalline core through correlation of the carbon chemical shifts to the double-quantum coherences of protons generated through the dipolar coupling between them. Supplemented by experiments that identify non-protonated carbons, the method leads to a complete assignment of the spectrum. We initially apply this method for assigning the C-13 spectrum of the liquid crystal 4-n-pentyl-4'-cyanobiphenyl oriented in the magnetic field. We then utilize the method to assign the aromatic carbon signals of a thiophene based liquid crystal thereby enabling the local order-parameters of the molecule to be estimated and the mutual orientation of the different sub-units to be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two Chrastil type expressions have been developed to model the solubility of supercritical fluids/gases in liquids. The three parameter expressions proposed correlates the solubility as a function of temperature, pressure and density. The equation can also be used to check the self-consistency of the experimental data of liquid phase compositions for supercritical fluid-liquid equilibria. Fifty three different binary systems (carbon-dioxide + liquid) with around 2700 data points encompassing a wide range of compounds like esters, alcohols, carboxylic acids and ionic liquids were successfully modeled for a wide range of temperatures and pressures. Besides the test for self-consistency, based on the data at one temperature, the model can be used to predict the solubility of supercritical fluids in liquids at different temperatures. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomization is the process of disintegration of a liquid jet into ligaments and subsequently into smaller droplets. A liquid jet injected from a circular orifice into cross flow of air undergoes atomization primarily due to the interaction of the two phases rather than an intrinsic break up. Direct numerical simulation of this process resolving the finest droplets is computationally very expensive and impractical. In the present study, we resort to multiscale modelling to reduce the computational cost. The primary break up of the liquid jet is simulated using Gerris, an open source code, which employs Volume-of-Fluid (VOF) algorithm. The smallest droplets formed during primary atomization are modeled as Lagrangian particles. This one-way coupling approach is validated with the help of the simple test case of tracking a particle in a Taylor-Green vortex. The temporal evolution of the liquid jet forming the spray is captured and the flattening of the cylindrical liquid column prior to breakup is observed. The size distribution of the resultant droplets is presented at different distances downstream from the location of injection and their spatial evolution is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a unique method was adopted to design porous membranes through crystallization induced phase separation in PVDF/PMMA (poly(vinylidene fluoride)/poly(methyl methacrylate)) blends. By etching out PMMA, which segregates either in the interlamellar and/or in the interspherulitic regions of the blends, nanoporous hierarchical structures can be derived. Different nanoparticles like titanium dioxide (TiO2), silver nanoparticle (Ag) decorated carbon nanotubes (Ag-CNTs), TiO2 decorated CNTs (TiO2-CNTs), Ag decorated TiO2 (Ag-TiO2) and Ag-TiO2 decorated CNTs (Ag@TiO2-CNTs) were synthesized and melt mixed with 80/20 PVDF/PMMA blends to render antibacterial activity to the membranes. Scanning electron microscopy (SEM) was used to study the crystalline morphology of the membranes. A significant improvement in the trans-membrane flux was obtained in the blends with Ag@TiO2 decorated CNTs as compared to the membranes derived from the neat blends, which can be attributed to the interconnected pores in these membranes. Both qualitative and quantitative studies of antifouling and antibacterial activity (using E. coli as a model bacterium) were performed using the standard plate count method. SEM micrographs clearly showed that the antifouling activity of the membranes was improved with addition of Ag@TiO2-CNTs. In the quantitative standard plate count method, the bacterial colony significantly decreased with the addition of Ag@TiO2-CNTs as against neat blends. This study opens a new avenue in the fabrication of polymer blend based membranes for water filtration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A supporting electrolyte based on lithium perchlorate has been functionalized with graphene (ionic liquid functionalized graphene (IFGR)) by facile electrochemical exfoliation of graphite rods in aq. LiClO4 solution. Poly(3,4-ethylenedioxythiophene) (PEDOT)-IFGR films were prepared by electropolymerization of EDOT monomer with IFGR as supporting electrolyte in ethanol at static potential of 1.5 V. The Raman, SEM, and XPS analysis of PEDOT-IFGR film confirmed the presence of functionalized graphene in the film. The PEDOT-IFGR films showed good electrochemical properties, better ionic and electrical conductivity, significant band gap, and excellent spectroelectrochemical and electrochromic properties. The electrical conductivity of PEDOT-IFGR film was measured as about 3968 S cm(-1). PEDOT-IFGR films at reduced state showed strong and broad absorption in the whole visible region and remarkable absorption at near-IR region. PEDOT-IFGR film showed electrochromic response between transmissive blue and darkish gray at redox potential. The color contrast (%T) between fully reduced and oxidized states of PEDOT-IFGR film is 25 % at lambda (max) of 485 nm. The optical switching stability of PEDOT-IFGR film has retained 80 % of its electroactivity even after 500 cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, porous membranes were designed by selectively etching the PEO phase, by water, from a melt-mixed PE/PEO blend. The pure water flux and the resistance across the membrane were systematically evaluated by employing an indigenously developed cross flow membrane setup. Both the phase morphology and the cross sectional morphology of the membranes was assessed by scanning electron microscopy and an attempt was made to correlate the observed morphology with the membrane performance. In order to design antibacterial membranes for water purification, partially reduced graphene oxide (rGO), silver nanoparticles (Ag) and silver nanoparticles decorated with rGO (rGO-Ag) were synthesized and incorporated directly into the blends during melt mixing. The loss of viability of bacterial cells was determined by the colony counting method using E. coli as a model bacterium. SEM images display that the direct contact with the rGO-Ag nanoparticles disrupts the cell membrane. In addition, the rGO-Ag nanoparticles exhibited a synergistic effect with respect to bacterial cell viability in comparison to both rGO and Ag nanoparticles. The possible mechanism associated with the antibacterial activity in the membranes was discussed. This study opens new avenues in designing antibacterial membranes for water purification.