425 resultados para RM(rate monotonic)algorithm
Resumo:
Communication applications are usually delay restricted, especially for the instance of musicians playing over the Internet. This requires a one-way delay of maximum 25 msec and also a high audio quality is desired at feasible bit rates. The ultra low delay (ULD) audio coding structure is well suited to this application and we investigate further the application of multistage vector quantization (MSVQ) to reach a bit rate range below 64 Kb/s, in a scalable manner. Results at 32 Kb/s and 64 Kb/s show that the trained codebook MSVQ performs best, better than KLT normalization followed by a simulated Gaussian MSVQ or simulated Gaussian MSVQ alone. The results also show that there is only a weak dependence on the training data, and that we indeed converge to the perceptual quality of our previous ULD coder at 64 Kb/s.
Resumo:
This paper investigates in-line spring-mass systems (An), fixed at one end and free at the other, with n-degrees of freedom (d.f.). The objective is to find feasible in-line systems (B(n)) that are isospectral to a given system. The spring-mass systems, A(n) and B(n), are represented by Jacobi matrices. An error function is developed with the help of the Jacobi matrices A(n) and B(n). The problem of finding the isospectral systems is posed as an optimization problem with the aim of minimizing the error function. The approach for creating isospectral systems uses the fact that the trace of two isospectral Jacobi matrices A(n) and B(n) should be identical. A modification is made to the diagonal elements of the given Jacobi matrix (A(n)), to create the isospectral systems. The optimization problem is solved using the firefly algorithm augmented by a local search procedure. Numerical results are obtained and resulting isospectral systems are shown for 4 d.f. and 10 d.f. systems.
Resumo:
We consider a fluid queue in discrete time with random service rate. Such a queue has been used in several recent studies on wireless networks where the packets can be arbitrarily fragmented. We provide conditions on finiteness of moments of stationary delay, its Laplace-Stieltjes transform and various approximations under heavy traffic. Results are extended to the case where the wireless link can transmit in only a few slots during a frame.
Resumo:
High-rate analysis of channel-optimized vector quantizationThis paper considers the high-rate performance of channel optimized source coding for noisy discrete symmetric channels with random index assignment. Specifically, with mean squared error (MSE) as the performance metric, an upper bound on the asymptotic (i.e., high-rate) distortion is derived by assuming a general structure on the codebook. This structure enables extension of the analysis of the channel optimized source quantizer to one with a singular point density: for channels with small errors, the point density that minimizes the upper bound is continuous, while as the error rate increases, the point density becomes singular. The extent of the singularity is also characterized. The accuracy of the expressions obtained are verified through Monte Carlo simulations.
Resumo:
We propose a randomized algorithm for large scale SVM learning which solves the problem by iterating over random subsets of the data. Crucial to the algorithm for scalability is the size of the subsets chosen. In the context of text classification we show that, by using ideas from random projections, a sample size of O(log n) can be used to obtain a solution which is close to the optimal with a high probability. Experiments done on synthetic and real life data sets demonstrate that the algorithm scales up SVM learners, without loss in accuracy. 1
Resumo:
An elementary combinatorial Tanner graph construction for a family of near-regular low density parity check (LDPC) codes achieving high girth is presented. These codes are near regular in the sense that the degree of a left/right vertex is allowed to differ by at most one from the average. The construction yields in quadratic time complexity an asymptotic code family with provable lower bounds on the rate and the girth for a given choice of block length and average degree. The construction gives flexibility in the choice of design parameters of the code like rate, girth and average degree. Performance simulations of iterative decoding algorithm for the AWGN channel on codes designed using the method demonstrate that these codes perform better than regular PEG codes and MacKay codes of similar length for all values of Signal to noise ratio.
Resumo:
We present a fast algorithm for computing a Gomory-Hu tree or cut tree for an unweighted undirected graph G = (V,E). The expected running time of our algorithm is Õ(mc) where |E| = m and c is the maximum u-vedge connectivity, where u,v ∈ V. When the input graph is also simple (i.e., it has no parallel edges), then the u-v edge connectivity for each pair of vertices u and v is at most n-1; so the expected running time of our algorithm for simple unweighted graphs is Õ(mn).All the algorithms currently known for constructing a Gomory-Hu tree [8,9] use n-1 minimum s-t cut (i.e., max flow) subroutines. This in conjunction with the current fastest Õ(n20/9) max flow algorithm due to Karger and Levine [11] yields the current best running time of Õ(n20/9n) for Gomory-Hu tree construction on simpleunweighted graphs with m edges and n vertices. Thus we present the first Õ(mn) algorithm for constructing a Gomory-Hu tree for simple unweighted graphs.We do not use a max flow subroutine here; we present an efficient tree packing algorithm for computing Steiner edge connectivity and use this algorithm as our main subroutine. The advantage in using a tree packing algorithm for constructing a Gomory-Hu tree is that the work done in computing a minimum Steiner cut for a Steiner set S ⊆ V can be reused for computing a minimum Steiner cut for certain Steiner sets S' ⊆ S.
Resumo:
Frequent episode discovery is a popular framework for mining data available as a long sequence of events. An episode is essentially a short ordered sequence of event types and the frequency of an episode is some suitable measure of how often the episode occurs in the data sequence. Recently,we proposed a new frequency measure for episodes based on the notion of non-overlapped occurrences of episodes in the event sequence, and showed that, such a definition, in addition to yielding computationally efficient algorithms, has some important theoretical properties in connecting frequent episode discovery with HMM learning. This paper presents some new algorithms for frequent episode discovery under this non-overlapped occurrences-based frequency definition. The algorithms presented here are better (by a factor of N, where N denotes the size of episodes being discovered) in terms of both time and space complexities when compared to existing methods for frequent episode discovery. We show through some simulation experiments, that our algorithms are very efficient. The new algorithms presented here have arguably the least possible orders of spaceand time complexities for the task of frequent episode discovery.
Resumo:
The synthesis of dsRNA is analyzed using a pathway model with amplifications caused by the aberrant RNAs. The transgene influx rate is assumed time-decaying considering the fact that the number of transgenes can not be infinite. The dynamics of the transgene induced RNA silencing is investigated using a system of coupled nonautonomous ordinary nonlinear differential equations which describe the model phenomenologically. The silencing phenomena are detected after a period of transcription. Important contributions of certain parameters are discussed with several numerical examples.