337 resultados para POLARIZATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical models are not successful in describing discharge characteristics of a lead-acid battery when the current density is varied over a wide range. A model is developed in this work to overcome this lacuna by introducing into the standard models two mechanisms that have not been used earlier. Lead sulfate particles nucleate and grow on active materials of electrodes during discharge, resulting in coverage of active area. Increasing rate of discharge builds supersaturation of lead sulfate rapidly, and causes increased extents of nucleation and coverage. Electrodes behave almost like an insulator due to deposition of lead sulfate when active materials are converted to a critical extent, and this can stop discharge process. Influence of this mechanism is also rate dependent. The new model developed is tested against data on polarization behavior, and capacity drawn as a function of current. The model successfully predicts both polarization curves and Peukert behavior. The model is used to predict charge that can be drawn at a current after partial discharge at a different current. Model suggests that altering nucleation behavior can be useful in enhancing capacity available for discharge. (C) 2015 The Electrochemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inhibition performance of ibuprofen triazole (IT) on mild steel (MS) corrosion in 1.0 M HCl and 0.5 M H2SO4 has been investigated by using electrochemical (potentiodynamic polarization and electrochemical impedance spectroscopy), gravimetric, and quantum chemical studies. Electrochemical investigation indicates that IT hampers MS corrosion via adsorption through a mixed inhibition mechanism. The protection ability of IT increases with an increasing concentration of inhibitor and decreases with increasing temperature. The adsorption of IT molecules on MS surface follows the Langmuir adsorption isotherm. Certain quantum chemical parameters were calculated to ascertain the correlation between inhibitive effect and molecular structure of IT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glioblastoma (grade IV glioma/GBM) is the most common primary adult malignant brain tumor with poor prognosis. To characterize molecular determinants of tumor-stroma interaction in GBM, we profiled 48 serum cytokines and identified macrophage colony-stimulating factor (MCSF) as one of the elevated cytokines in sera from GBM patients. Both MCSF transcript and protein were up-regulated in GBM tissue samples through a spleen tyrosine kinase (SYK)-dependent activation of the PI3K-NF kappa B pathway. Ectopic overexpression and silencing experiments revealed that glioma-secreted MCSF has no role in autocrine functions and M2 polarization of macrophages. In contrast, silencing expression of MCSF in glioma cells prevented tube formation of human umbilical vein endothelial cells elicited by the supernatant from monocytes/microglial cells treated with conditioned medium from glioma cells. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture showed that glioma-derived MCSF induces changes in microglial secretome and identified insulin-like growth factor-binding protein 1 (IGFBP1) as one of the MCSF-regulated proteins secreted by microglia. Silencing IGFBP1 expression in microglial cells or its neutralization by an antibody reduced the ability of supernatants derived from microglial cells treated with glioma cell-conditioned medium to induce angiogenesis. In conclusion, this study shows up-regulation of MCSF in GBM via a SYK-PI3K-NF kappa B-dependent mechanism and identifies IGFBP1 released by microglial cells as a novel mediator of MCSF-induced angiogenesis, of potential interest for developing targeted therapy to prevent GBM progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we demonstrate that in interbacterial quorum signal moderators, N-acylhomoserine lactones (AHLs), the stabilization of bioactive pharmacophore lactone against lysis is through the e(-) withdrawing N-acyl motif which reduces lactone carbonyl polarization. This lysis is assisted by weak (<0.05 kcal mol(-1)) contacts between N-acyl O and lactone C'. The interactions that preclude this weak contact, in the free and receptor-bound AHLs, improve lactone halflife and hence are key to the design of the antibacterial AHL analogues. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantum wires with spin-orbit coupling provide a unique opportunity to simultaneously control the coupling strength and the screened Coulomb interactions where new exotic phases of matter can be explored. Here we report on the observation of an exotic spin-orbit density wave in Pb-atomic wires on Si(557) surfaces by mapping out the evolution of the modulated spin-texture at various conditions with spin-and angle-resolved photoelectron spectroscopy. The results are independently quantified by surface transport measurements. The spin polarization, coherence length, spin dephasing rate and the associated quasiparticle gap decrease simultaneously as the screened Coulomb interaction decreases with increasing excess coverage, providing a new mechanism for generating and manipulating a spin-orbit entanglement effect via electronic interaction. Despite clear evidence of spontaneous spin-rotation symmetry breaking and modulation of spin-momentum structure as a function of excess coverage, the average spin polarization over the Brillouin zone vanishes, indicating that time-reversal symmetry is intact as theoretically predicted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines the effect of electric field on energy absorption capacity of carbon nanotube forests (CNTFs), comprising of vertically aligned multiwalled carbon nanotubes, under both quasistatic (strain rate, (epsilon) over dot = 10(-3) s(-1)) and dynamic ((epsilon) over dot = similar to 10(3) s(-1)) loading conditions. Under quasistatic condition, the CNTFs were cyclically loaded and unloaded while electric field was applied along the length of carbon nanotube (CNT) either throughout the loading cycle or explicitly during either the loading or the unloading segment. The energy absorbed per cycle by CNTF increased monotonically with electric field when the field was applied only during the loading segment: A 7 fold increase in the energy absorption capacity was registered at an electric field of 1 kV/m whereas no significant change in it was noted for other schemes of electro-mechanical loading. The energy absorption capacity of CNTF under dynamic loading condition also increased monotonically with electric field; however, relative to the quasistatic condition, less pronounced effect was observed. This intriguing strain rate dependent effect of electric field on energy absorption capacity of CNTF is explained in terms of electric field induced strengthening of CNTF, originating from the time dependent electric field induced polarization of CNT. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-kappa TiO2 thin films have been fabricated using cost effective sol-gel and spin-coating technique on p-Si (100) wafer. Plasma activation process was used for better adhesion between TiO2 films and Si. The influence of annealing temperature on the structure-electrical properties of titania films were investigated in detail. Both XRD and Raman studies indicate that the anatase phase crystallizes at 400 degrees C, retaining its structural integrity up to 1000 degrees C. The thickness of the deposited films did not vary significantly with the annealing temperature, although the refractive index and the RMS roughness enhanced considerably, accompanied by a decrease in porosity. For electrical measurements, the films were integrated in metal-oxide-semiconductor (MOS) structure. The electrical measurements evoke a temperature dependent dielectric constant with low leakage current density. The Capacitance-voltage (C-V) characteristics of the films annealed at 400 degrees C exhibited a high value of dielectric constant (similar to 34). Further, frequency dependent C-V measurements showed a huge dispersion in accumulation capacitance due to the presence of TiO2/Si interface states and dielectric polarization, was found to follow power law dependence on frequency (with exponent `s'=0.85). A low leakage current density of 3.6 x 10(-7) A/cm(2) at 1 V was observed for the films annealed at 600 degrees C. The results of structure-electrical properties suggest that the deposition of titania by wet chemical method is more attractive and cost-effective for production of high-kappa materials compared to other advanced deposition techniques such as sputtering, MBE, MOCVD and AID. The results also suggest that the high value of dielectric constant kappa obtained at low processing temperature expands its scope as a potential dielectric layer in MOS device technology. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beneficial effects of carbon grafting into the iron active material for rechargeable alkaline-iron-electrodes with and without Bi2S3 additive is probed by in situ X-ray diffraction in conjunction with Extended X-ray Absorption Fine Structure (EXAFS) and electrochemistry. EXAFS data unravel that the composition of pristine active material (PAM) for iron electrodes comprises 87% of magnetite and 13% of alpha-iron while carbon-grafted active material comprises 60% of magnetite and 40% of alpha-iron. In situ XRD patterns are recorded using a specially designed electrochemical cell. XRD data reflect that magnetite present in PAM iron electrode, without bismuth sulfide additive, is not reduced during charging while PAM iron electrode with bismuth sulfide additive is partially reduced to alpha-Fe/Fe(OH)(2). Interestingly, carbon-grafted-iron electrodes with bismuth sulfide exhibit complete conversion of active material to alpha-Fe/Fe(OH)2. The ameliorating effect of carbon grafting is substantiated by kinetic parameters obtained from steady-state potentiostatic polarization and Tafel plots. The mechanism for iron-electrode charge - discharge reactions are discussed in the light of the potential - pH diagrams for Fe - H2O, S - H2O and FeSads - H2O systems and it is surmised that carbon grafting into iron active material promotes its electrochemical utilization. (C) The Author(s) 2015. Published by ECS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We re-assess experimental soft X-ray absorption spectra of the oxygen K-shell which we recorded operando from iron oxide during photoelectrochemical water splitting in KOH electrolyte. In particular, we refer to recently reported transitional electron hole states which originate within the charge carrier depletion layer of the iron oxide and on the iron oxide surface. For the latter we find that an intermediate oxy-peroxo species is formed on the iron oxide with increasing bias potential, which disappears upon further polarization of the electrode, concomitantly with the evolution and disappearance of the aforementioned surface state. The oxygen spectra contain also the spectroscopic signatures of the electrolyte water, the position of which changes with increasing bias potential towards lower X-ray energies, revealing the breaking and formation of hydrogen bonds in the water during the experiment. Combined with potential dependent impedance spectroscopy data we are able to sketch the molecular structure of chemical intermediates and their charge carrier dynamics. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A ray tracing based path length calculation is investigated for polarized light transport in a pixel space. Tomographic imaging using polarized light transport is promising for applications in optical projection tomography of small animal imaging and turbid media with low scattering. Polarized light transport through a medium can have complex effects due to interactions such as optical rotation of linearly polarized light, birefringence, diattenuation and interior refraction. Here we investigate the effects of refraction of polarized light in a non-scattering medium. This step is used to obtain the initial absorption estimate. This estimate can be used as prior in Monte Carlo (MC) program that simulates the transport of polarized light through a scattering medium to assist in faster convergence of the final estimate. The reflectance for p-polarized (parallel) and s-polarized (perpendicular) are different and hence there is a difference in the intensities that reach the detector end. The algorithm computes the length of the ray in each pixel along the refracted path and this is used to build the weight matrix. This weight matrix with corrected ray path length and the resultant intensity reaching the detector for each ray is used in the algebraic reconstruction (ART) method. The proposed method is tested with numerical phantoms for various noise levels. The refraction errors due to regions of different refractive index are discussed, the difference in intensities with polarization is considered. The improvements in reconstruction using the correction so applied is presented. This is achieved by tracking the path of the ray as well as the intensity of the ray as it traverses through the medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface of mild steel was modified by generating cetyl-trimethyl ammonium bromide (CTAB) self-assembled monolayer (SAM) to enhance the corrosion resistance property. The experimental parameters (pH and time) for SAM generation were optimized. The modified surface was characterized by infrared reflection absorption spectroscopy (IRRAS) and contact angle measurements. The SAM generated in 1 mM solution of CTAB at pH 2.5 for 2 h showed a regimented monolayer. Polarization and electrochemical impedance spectroscopic (EIS) studies demonstrated a significant enhancement in the corrosion resistance property of the SAM protected steel in both 1 M HCl and 3.5% NaCl solution. The CTAB SAM surface substantially reduced the corrosion rate by approximately 4 times in 1 M HCl and 1.5 times in 3.5% NaCl media as compared to bare steel. Scanning electron microscopy images confirmed the formation of lesser amounts of corrosion products on the SAM protected surface. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multi-year observations from the network of ground-based observatories (ARFINET), established under the project `Aerosol Radiative Forcing over India' (ARFI) of Indian Space Research Organization and space-borne lidar `Cloud Aerosol Lidar with Orthogonal Polarization' (CALIOP) along with simulations from the chemical transport model `Goddard Chemistry Aerosol Radiation and Transport' (GOCART), are used to characterize the vertical distribution of atmospheric aerosols over the Indian landmass and its spatial structure. While the vertical distribution of aerosol extinction showed higher values close to the surface followed by a gradual decrease at increasing altitudes, a strong meridional increase is observed in the vertical spread of aerosols across the Indian region in all seasons. It emerges that the strong thermal convections cause deepening of the atmospheric boundary layer, which although reduces the aerosol concentration at lower altitudes, enhances the concentration at higher elevations by pumping up more aerosols from below and also helping the lofted particles to reach higher levels in the atmosphere. Aerosol depolarization ratios derived from CALIPSO as well as the GOCART simulations indicate the dominance of mineral dust aerosols during spring and summer and anthropogenic aerosols in winter. During summer monsoon, though heavy rainfall associated with the Indian monsoon removes large amounts of aerosols, the prevailing southwesterly winds advect more marine aerosols over to landmass (from the adjoining oceans) leading to increase in aerosol loading at lower altitudes than in spring. During spring and summer months, aerosol loading is found to be significant, even at altitudes as high as 4 km, and this is proposed to have significant impacts on the regional climate systems such as Indian monsoon. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the first dielectric investigation of high-k yttrium copper titanate thin films, which were demonstrated to be very promising for nanoelectronics applications. The dielectric constant of these films is found to vary from 100 down to 24 (at 100 kHz) as a function of deposition conditions, namely oxygen pressure and film thickness. The physical origin of such variation was investigated in the framework of universal dielectric response and Cole-Cole relations and by means of voltage dependence studies of the dielectric constant. Surface-related effects and charge hopping polarization processes, strictly dependent on the film microstructure, are suggested to be mainly responsible for the observed dielectric response. In particular, the bulky behaviour of thick films deposited at lower oxygen pressure evolves towards a more complex and electrically heterogeneous structure when either the thickness decreases down to 50 nm or the films are grown under high oxygen pressure.