395 resultados para Hydrogen absorption
Resumo:
We report the mechanical properties of a framework structure, Cu2F(HF)(HF2)(pyz)(4)](SbF6)(2)](n) (pyz = pyrazine), in which Cu(pyz)(2)](2+) layers are pillared by HF2- anions containing the exceptionally strong F-H center dot center dot center dot F hydrogen bonds. Nanoindentation studies on single-crystals clearly demonstrate that such bonds are extremely robust and mechanically comparable with coordination bonds in this system.
Resumo:
Trace addition of B to Ti and its alloys leads to a marked microstructural refinement, which in turn enhances the tensile and fatigue properties of the as-cast alloys. This can be particularly advantageous in applications wherein Ti alloys are used in the as-cast form. In some of these, the environment containing H and Ti alloy components is susceptible to embrittlement due to H uptake. Whether the addition of B to Ti-6Al-4V improves the relative mechanical performance of such cast components used in H environments is examined in this work. Cast Ti-6Al-4V-xB (0 <= x <= 0.55 wt%) alloys were H charged at 500 and 700 degrees C for up to 4 h. Microstructures and room temperature tensile properties of the resulting alloys have been evaluated. Experimental results show that charging at 700 degrees C for 2 h leads to the formation of titanium hydride in the microstructure, which in turn causes severe embrittlement. For shorter durations of charging, a marginal increase in strength was noted, which is attributed to the solid solution strengthening by H. The mechanical performance of the B modified alloys was found to be relatively higher, implying that B addition not only refines the as-cast microstructure but also is beneficial in applications that involve H environment A direct correlation between the volume fraction of TiB particles in the microstructure and the relative reduction in the strength of H-embrittled alloys suggests that the addition of B to Ti alloys, in optimum quantities, can be utilized as a strategy to design alloys that are more resistant to H embrittlement.
Resumo:
Most charge generation studies on organic solar cells focus on the conventional mode of photocurrent generation derived from light absorption in the electron donor component (so called channel I). In contrast, relatively little attention has been paid to the alternate generation pathway: light absorption in the electron acceptor followed by photo-induced hole transfer (channel II). By using the narrow optical gap polymer poly(3,6-dithieno3,2-b] thiophen-2-yl)-2,5-bis(2-octyldodecyl)-pyrrolo- 3,4-c]pyrrole-1,4-dione-5',5 `'-diyl-alt-4,8-bis(dodecyloxy) benzo1,2-b:4,5-b'] dithiophene-2,6-diyl with two complimentary fullerene absorbers; phenyl-C-61-butyric acid methyl ester, and phenyl-C-71-butyric acid methyl ester (70-PCBM), we have been able to quantify the photocurrent generated each of the mechanisms and find a significant fraction (>30%), which is derived in particular from 70-PCBM light absorption.
Resumo:
Fourier Transform Infrared (FTIR) spectroscopic analysis has been carried out on the hydrogenated amorphous silicon (a-Si:H) thin films deposited by DC, pulsed DC (PDC) and RF sputtering process to get insight regarding the total hydrogen concentration (C-H) in the films, configuration of hydrogen bonding, density of the films (decided by the vacancy and void incorporation) and the microstructure factor (R*) which varies with the type of sputtering carried out at the same processing conditions. The hydrogen incorporation is found to be more in RF sputter deposited films as compared to PDC and DC sputter deposited films. All the films were broadly divided into two regions namely vacancy dominated and void dominated regions. At low hydrogen dilutions the films are vacancy dominated and at high hydrogen dilutions they are void dominated. This demarcation is at C-H = 23 at.% H for RF, C-H = 18 at.% H for PDC and C-H = 14 at.% H for DC sputter deposited films. The microstructure structure factor R* is found to be as low as 0.029 for DC sputter deposited films at low C-H. For a given C-H, DC sputter deposited films have low R* as compared to PDC and RF sputter deposited films. Signature of dihydride incorporation is found to be more in DC sputter deposited films at low C-H.
Resumo:
A graded selection of hydrogen bonds and halogen bonds allows for the isolation of 2 : 1 : 1 ternary cocrystals of the general form 4-nitrobenzamide : diacid : 1,4-dihalogenated benzene, which are mediated by the amide-acid and I center dot center dot center dot O2N supramolecular synthons.
Resumo:
Hydrogen bonded complexes formed between the square pyramidal Fe(CO)(5) with HX (X = F, Cl, Br), showing X-H center dot center dot center dot Fe interactions, have been investigated theoretically using density functional theory (DFT) including dispersion correction. Geometry, interaction energy, and large red shift of about 400 cm(-1) in the FIX stretching frequency confirm X-H center dot center dot center dot Fe hydrogen bond formation. In the (CO)(5)Fe center dot center dot center dot HBr complex, following the significant red shift, the HBr stretching mode is coupled with the carbonyl stretching modes. This clearly affects the correlation between frequency shift and binding energy, which is a hallmark of hydrogen bonds. Atoms in Molecule (AIM) theoretical analyses show the presence of a bond critical point between the iron and the hydrogen of FIX and significant mutual penetration. These X-H center dot center dot center dot Fe hydrogen bonds follow most but not all of the eight criteria proposed by Koch and Popelier (J. Phys. Chem. 1995, 99, 9747) based on their investigations on C-H center dot center dot center dot O hydrogen bonds. Natural bond orbital (NBO) analysis indicates charge transfer from the organometallic system to the hydrogen bond donor. However, there is no correlation between the extent of charge transfer and interaction,energy, contrary to what is proposed in the recent IUPAC recommendation (Pure Appl.. Chem. 2011, 83, 1637). The ``hydrogen bond radius'' for iron has been determined to be 1.60 +/- 0.02 angstrom, and not surprisingly it is between the covalent (127 angstrom) and van der Waals (2.0) radii of Fe. DFT and AIM theoretical studies reveal that Fe in square pyramidal Fe(CO)(5) can also form halogen bond with CIF and ClH as ``halogen bond donor''. Both these complexes show mutual penetration as well, though the Fe center dot center dot center dot Cl distance is closer to the sum of van der Waals radii of Fe and Cl in (CO)5Fe center dot center dot center dot ClH, and it is about 1 angstrom less in (CO)(5)Fe center dot center dot center dot ClF.
Resumo:
Hydrogen bonding is the most important non-covalent interaction utilised in building supramolecular assemblies and is preferred often as a means of construction of molecular, oligomeric as well as polymeric materials that show liquid crystalline properties. In this work, a pyridine based nematogenic acceptor has been synthesized and mixed with non-mesogenic 4-methoxy benzoic acid to get a hydrogen bonded mesogen. The existence of hydrogen bonding between the pyridyl unit and the carboxylic acid was established using FT-IR spectroscopy from the observation of characteristic stretching vibrations of unionized type at 2425 and 1927 cm(-1). The mesogenic acceptor and the complex have been investigated using C-13 NMR in solution, solid and liquid crystalline states. Together with the 2D separated local field NMR experiments, the studies confirm the molecular structure in the mesophase and yield the local orientational order parameters. It is observed that the insertion of 4-methoxy benzoic acid not only enhances the mesophase stability but also induces a smectic phase due to an increase in the core length of the hydrogen bonded mesogen.
Resumo:
Rutile phase TiO2 nanoparticles have been successfully prepared at 120 degrees C for one day via the ionothermal method using imidazolium based functionalized ionic liquid. The obtained products have been characterized by various techniques. XRD pattern shows rutile phase with crystallite size similar to 15 nm. FTIR shows a band at similar to 410 cm(-1) assigned to Ti-O-Ti stretching vibrations and few other bands due to the presence of ionic liquid. UV-vis studies show maximum absorbance at similar to 215 nm due to the imidazolium moiety and a band at 316 nm due to TiO2 nanoparticles. TEM images show that the size of particle is similar to 30 nm. TG-DTA shows weight loss corresponding to the formation of stable TiO2 nanoparticles. The rutile TiO2 nanoparticle is a promising material for hydrogen generation through photocatalysis. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Two Schiff base metal complexes Cu-SPETNNO3 (1) and Ni-SPETNNO3 (2) SPETN=2,2-propane,1,3-diylbis(nitrilomethyldyne)pyridyl,phenolate] ] with hydrogen bonding groups have been synthesized and characterized by single-crystal X-ray diffraction. In both of the compounds nitrates occupy a crystallographic general position. In 1 the lattice nitrates are on the 2(1) screw axis while in 2 they are at the crystallographic inversion center. C-HOnitrate synthons (formed by the nitrate anions and peripheral hydrogen bonding groups of the metal complexes) are non-covalent building blocks in molecular-assembly and packing of the cationic Schiff base metal complexes (M=Ni2+, Cu2+), resulting in 2-D hydrogen bonded networks. The CuCu non-bonding contact in 1 is 3.268 angstrom while the Ni-Ni bonding distance in 2 is 3.437 angstrom.
Resumo:
A systematic understanding of the noncovalent interactions that influence the structures of the cis conformers and the equilibrium between the cis and the trans conformers, of the X-Pro tertiary amide motifs, is presented based on analyses of H-1-, C-13-NMR and FTIR absorption spectra of two sets of homologous peptides, X-Pro-Aib-OMe and X-Pro-NH-Me (where X is acetyl, propionyl, isobutyryl and pivaloyl), in solvents of varying polarities. First, this work shows that the cis conformers of any X-Pro tertiary amide motif, including Piv-Pro, are accessible in the new motifs X-Pro-Aib-OMe, in solution. These conformers are uniquely observable by FTIR spectroscopy at ambient temperatures and by NMR spectroscopy from temperatures as high as 273 K. This is made possible by the persistent presence of n(i-1i)* interactions at Aib, which also influence the disappearance of steric effects at these cis X-Pro rotamers. Second, contrary to conventional understanding, the energy contribution of steric effects to the cis/trans equilibrium at the X-Pro motifs is found to be nonvariant (0.54 +/- 0.02 kcal/mol) with increase in steric bulk on the X group. Third, the current studies provide direct evidence for the weak intramolecular interactions namely the n(i-1i)*, the N-Pro center dot center dot center dot Hi+1 (C(5)a), and the C-7 hydrogen bond that operate and influence the structures, stabilities, and dynamics between different conformational states of X-Pro tertiary amide motifs. NMR and IR spectral data suggest that the cis conformers of X-Pro motifs are ensembles of short-lived rotamers about the C-X-N-Pro bond. (c) 2013 Wiley Periodicals, Inc. Biopolymers 101: 66-77, 2014.
Resumo:
Aerosol absorption is poorly quantified because of the lack of adequate measurements. It has been shown that the Ozone Monitoring Instrument (OMI) aboard EOS-Aura and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard EOS-Aqua, which fly in formation as part of the A-train, provide an excellent opportunity to improve the accuracy of aerosol retrievals. Here, we follow a multi-satellite approach to estimate the regional distribution of aerosol absorption over continental India for the first time. Annually and regionally averaged aerosol single-scattering albedo over the Indian landmass is estimated as 0.94 +/- 0.03. Our study demonstrates the potential of multi-satellite data analysis to improve the accuracy of retrieval of aerosol absorption over land.
Resumo:
Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H-2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature. (C) 2013 AIP Publishing LLC.
Resumo:
We here report what we believe to be an important method for studying hydrogen bonding in systems containing a paramagnetic centre. The technique of electron-nuclear double resonance ( ENDOR) has been applied to study the hydrogen-bond network around the AsO44-. centre in X-ray irradiated KH2AsO4. ENDOR transitions from several sets of hydrogen nuclei surrounding the centre were observed at 4.2 degrees K and the spectra for two sets of neighbouring nuclei are identified. The angular dependences for these spectra are fitted with a spin-Hamiltonian to obtain the isotropic and anisotropic magnetic hyperfine constants. The results are discussed in terms of the available spectroscopic and crystallographic data on KH2AsO4 and the order-disorder model of ferroelectrictricity in this class of crystals.
Resumo:
Semiconductor nanocrystals of different formulations have been extensively studied for use in thin-film photovoltaics. Materials used in such devices need to satisfy the stringent requirement of having large absorption cross sections. Hence, type-II semiconductor nanocrystals that are generally considered to be poor light absorbers have largely been ignored. In this article, we show that type-II semiconductor nanocrystals can be tailored to match the light-absorption abilities of other types of nanostructures as well as bulk semiconductors. We synthesize type-II ZnTe/CdS core/shell nanocrystals. This material is found to exhibit a tunable band gap as well as absorption cross sections that are comparable to (die. This result has significant implications for thin-film photovoltaics, where the use of type-II nanocrystals instead of pure semiconductors can improve charge separation while also providing a much needed handle to regulate device composition.