319 resultados para HIGH-ENERGY EMISSION
Resumo:
The acid-pyridine heterosynthon may be used as a `` molecular'' module to probe the structural landscape of the benzoic acid : isonicotinamide 1 : 1 cocrystal, BA: INA. Experimental structures of 1 : 1 cocrystals of fluorobenzoic acids (FBA) with isonicotinamide (INA) contain this heterosynthon and correspond to high-energy structures of 1 : 1 BA : INA.
Resumo:
We use the recently measured accurate BaBaR data on the modulus of the pion electromagnetic form factor,Fπ(t), up to an energy of 3 GeV, the I=1P-wave phase of the π π scattering ampli-tude up to the ω−π threshold, the pion charge radius known from Chiral Perturbation Theory,and the recently measured JLAB value of Fπ in the spacelike region at t=−2.45GeV2 as inputs in a formalism that leads to bounds on Fπ in the intermediate spacelike region. We compare our constraints with experimental data and with perturbative QCD along with the results of several theoretical models for the non-perturbative contribution s proposed in the literature.
Resumo:
We extend our analysis of transverse single spin asymmetry in electroproduction of J/ψ to include the effect of the scale evolution of the transverse momentum dependent (TMD) parton distribution functions and gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS, and eRHIC energies using the color evaporation model of charmonium production, using an analytically obtained approximate solution of TMD evolution equations discussed in the literature. We find that there is a reduction in the asymmetry compared with our predictions for the earlier case considered by us, wherein the Q2 dependence came only from DGLAP evolution of the unpolarized gluon densities and a different parametrization of the TMD Sivers function was used.
Resumo:
We consider generalized gravitational entropy in various higher derivative theories of gravity dual to four dimensional CFTs using the recently proposed regularization of squashed cones. We derive the universal terms in the entanglement entropy for spherical and cylindrical surfaces. This is achieved by constructing the Fefferman-Graham expansion for the leading order metrics for the bulk geometry and evaluating the generalized gravitational entropy. We further show that the Wald entropy evaluated in the bulk geometry constructed for the regularized squashed cones leads to the correct universal parts of the entanglement entropy for both spherical and cylindrical entangling surfaces. We comment on the relation with the Iyer-Wald formula for dynamical horizons relating entropy to a Noether charge. Finally we show how to derive the entangling surface equation in Gauss-Bonnet holography.