363 resultados para Experimental algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combined 3D finite element simulation and experimental study of interaction between a notch and cylindrical voids ahead of it in single edge notch (tension) aluminum single crystal specimens is undertaken in this work. Two lattice orientations are considered in which the notch front is parallel to the crystallographic 10 (1) over bar] direction. The flat surface of the notch coincides with the (010) plane in one orientation and with the (1 (1) over bar1) plane in the other. Three equally spaced cylindrical voids are placed directly ahead of the notch tip. The predicted load-displacement curves, slip traces, lattice rotation and void growth from the finite element analysis are found to be in good agreement with the experimental observations for both the orientations. Finite element results show considerable through-thickness variation in both hydrostatic stress and equivalent plastic slip which, however, depends additionally on the lattice orientation. The through-thickness variation in the above quantities affects the void growth rate and causes it to differ from the center-plane to the free surface of the specimen. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Success in the advancement of thermoacoustic field led the researchers to develop the thermoacoustic engines which found its applications in various fields such as refrigeration, gas mixture separation, natural gas liquefaction, and cryogenics. The objective of this study is to design and fabricate the twin thermoacoustic heat engine (TAHE) producing the acoustic waves with high resonance frequencies which is used to drive a thermoacoustic refrigerator efficiently by the influence of geometrical parameters and working fluids. Twin TAHE has gained significant attention due to the production of high intensity acoustic waves than single TAHE. In order to drive an efficient thermoacoustic refrigerator, a twin thermoacoustic heat engine is built up and its performance are analysed by varying the resonator length and working fluid. The performance is measured in terms of onset temperature difference, resonance frequency and pressure amplitude of the oscillations generated from twin TAHE. The simulation is performed using free software DeltaEC, from LANL, USA. The simulated DeltaEC results are compared with experimental results and the deviations are found within +10%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The layered double hydroxides (LDH) or anionic clays are an important class of ion-exchange materials. They consist of positively charged brucite-like inorganic sheets with charge-compensating exchangeable anions in the interlamellar space. Here we show how neutral TCNQ (7,7,8,8-tetracyanoquinodimethane) molecules can be included within the galleries of an LDH. To do so, we exploit the fact that TCNQ is a good electron acceptor that forms donor acceptor complexes with a variety of donors. The electron donor aniline was intercalated into a Mg-Al LDH as p-aminobenzoate (AB) ions by a conventional ion-exchange reaction. We show here that neutral TCNQ molecules may be driven into the galleries of the layered solid by charge-transfer complex formation with the intercalated p-aminobenzoate anions. We use diffraction and spectroscopic measurements in combination with molecular dynamics simulations and quantum chemical calculations to establish the nature of interactions and arrangement of the charge-transfer complex within the galleries of the layered double hydroxide. Electrostatic interactions between the TCNQ molecules and the anchored AB ions, subsequent to charge transfer, are the driving force for the inclusion of TCNQ molecules in the galleries of the LDH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering has been the most popular method for data exploration. Clustering is partitioning the data set into sub-partitions based on some measures say the distance measure, each partition has its own significant information. There are a number of algorithms explored for this purpose, one such algorithm is the Particle Swarm Optimization(PSO) which is a population based heuristic search technique derived from swarm intelligence. In this paper we present an improved version of the Particle Swarm Optimization where, each feature of the data set is given significance accordingly by adding some random weights, which also minimizes the distortions in the dataset if any. The performance of the above proposed algorithm is evaluated using some benchmark datasets from Machine Learning Repository. The experimental results shows that our proposed methodology performs significantly better than the previously performed experiments.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase equilibria in the Cu-rich corner of the ternary system Cu-Al-Sn have been re-investigated. Final equilibrium microstructures of 20 ternary alloy compositions near Cu3Al were used to refine the ternary phase diagram. The microstructures were characterized using optical microscopy (OM), x-ray diffraction (XRD), electron probe microanalysis and transmission electron microscopy. Isothermal sections at 853, 845, 833, 818, 808, 803 and 773 K have been composed. Vertical sections have been drawn at 2 and 3 at% Sn, showing beta(1) as a stable phase. Three-phase fields (alpha + beta + beta(1)) and (beta + beta(1) + gamma(1)) result from beta -> alpha + beta(1) eutectoid and beta + gamma(1) -> beta(1) peritectoid reactions forming metastable beta(1) in the binary Cu-Al. With the lowering of temperature from 853 to 818 K, these three-phase fields are shifted to lower Sn concentrations, with simultaneous shrinkage and shifting of (beta + beta(1)) two-phase field. The three-phase field (alpha + beta + gamma(1)) resulting from the binary reaction beta -> alpha + gamma(1) shifts to higher Sn contents, with associated shrinkage of the beta field, with decreasing temperature. With further reduction of temperature, a new ternary invariant reaction beta + beta(1) -> alpha + gamma(1) is observed at similar to 813 K. The beta disappears completely at 803 K, giving rise to the three-phase field (alpha + beta(1) + gamma(1)). Some general guidelines on the role of ternary additions (M) on the stability of the ordered beta(1) phase are obtained by comparing the results of this study with data in the literature on other systems in the systems group Cu-Al-M.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here, an experimental set-up developed for the first time in India for the determination of mixing ratio and carbon isotopic ratio of air-CO2. The set-up includes traps for collection and extraction of CO2 from air samples using cryogenic procedures, followed by the measurement of CO2 mixing ratio using an MKS Baratron gauge and analysis of isotopic ratios using the dual inlet peripheral of a high sensitivity isotope ratio mass spectrometer (IRMS) MAT 253. The internal reproducibility (precision) for the PC measurement is established based on repeat analyses of CO2 +/- 0.03 parts per thousand. The set-up is calibrated with international carbonate and air-CO2 standards. An in-house air-CO2 mixture, `OASIS AIRMIX' is prepared mixing CO2 from a high purity cylinder with O-2 and N-2 and an aliquot of this mixture is routinely analyzed together with the air samples. The external reproducibility for the measurement of the CO2 mixing ratio and carbon isotopic ratios are +/- 7 (n = 169) mu mol.mol(-1) and +/- 0.05 (n = 169) parts per thousand based on the mean of the difference between two aliquots of reference air mixture analyzed during daily operation carried out during November 2009-December 2011. The correction due to the isobaric interference of N2O on air-CO2 samples is determined separately by analyzing mixture of CO2 (of known isotopic composition) and N2O in varying proportions. A +0.2 parts per thousand correction in the delta C-13 value for a N2O concentration of 329 ppb is determined. As an application, we present results from an experiment conducted during solar eclipse of 2010. The isotopic ratio in CO2 and the carbon dioxide mixing ratio in the air samples collected during the event are different from neighbouring samples, suggesting the role of atmospheric inversion in trapping the emitted CO2 from the urban atmosphere during the eclipse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slow flow in granular materials is characterized by high solid fraction and sustained inter-particle interaction. The kinematics of trawling or cutting is encountered in processes such as locomotion of organisms in sand; trawl gear movement on a soil deposit; plow movement; movement of rovers, earth moving equipment etc. Additionally, this configuration is very akin to shallow drilling configuration encountered in the mining and petroleum industries. An experimental study has been made in order to understand velocity and deformation fields in cutting of a model rounded sand. Under nominal plane strain conditions, sand is subjected to orthogonal cutting at different tool-rake angles. High-resolution optical images of the region of cutting were obtained during the flow of the granular ensemble around the tool. Interesting kinematics underlying the formation of a chip and the evolution of the deformation field is seen in these experiments. These images are also analyzed using a PIV algorithm and detailed information of the deformation parameters such as velocity, strain rate and volume change is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical behaviour of cohesive-frictional granular materials is a combination of the strength pervading as intergranular friction (represented as an angle of internal friction - Phi), and the cohesion (C) between these particles. Most behavioral or constitutive models of this class of granular materials comprise of a cohesion and frictional component with no regard to the length scale i.e. from the micro structural models through the continuum models. An experimental study has been made on a model granular material, viz. angular sand with different weights of binding agents (varying degrees of cohesion) at multiple length scales to physically map this phenomenon. Cylindrical specimen of various diameters - 10, 20, 38, 100, 150 mm (and with an aspect ratio of 2) are reconstituted with 2, 4 and 8% by weight of a binding agent. The magnitude of this cohesion is analyzed using uniaxial compression tests and it is assumed to correspond to the peak in the normalized stress-strain plot. Increase in the cohesive strength of the material is seen with increasing size of the specimen. A possibility of ``entanglement'' occurring in larger specimens is proposed as a possible reason for deviation from a continuum framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed SmartConnect, a tool that addresses the growing need for the design and deployment of multihop wireless relay networks for connecting sensors to a control center. Given the locations of the sensors, the traffic that each sensor generates, the quality of service (QoS) requirements, and the potential locations at which relays can be placed, SmartConnect helps design and deploy a low-cost wireless multihop relay network. SmartConnect adopts a field interactive, iterative approach, with model based network design, field evaluation and relay augmentation performed iteratively until the desired QoS is met. The design process is based on approximate combinatorial optimization algorithms. In the paper, we provide the design choices made in SmartConnect and describe the experimental work that led to these choices. Finally, we provide results from some experimental deployments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental solubilities of the mixture of nitrophenol (m- and p-) isomers were determined at 308, 318 and 328 K over a pressure range of 10-17.55 MPa. Compared to the binary solubilities, the ternary solubilities of m-nitrophenol increased at 308, 318 and 328 K. The ternary solubilities of p-nitrophenol increased at 308 K, while the ternary solubilities decreased at lower pressures and increased at higher pressure at 318 and 328 K. The solubilities of the solid mixtures in supercritical carbon dioxide (SCCO2) were correlated with solution models by incorporating the non-idealities using activity coefficient based models. The Wilson and NRTL activity coefficient models were applied to determine the nature of the interactions between the molecules. The equation developed by using the NRTL model has three parameters and correlates mixture solubilities of solid solutes in terms of temperature and cosolute composition. The equation derived from the Wilson model contains five parameters and correlates solubilities in terms of temperature, density and cosolute composition. These two new equations developed in this work were used to correlate the solubilities of 25 binary solid mixtures including the current data. The average AARDs of the model equations derived using the NRTL and Wilson models for the solid mixtures were found to be 7% and 4%, respectively. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enigmatic type II C-F center dot center dot center dot F-C and C-F center dot center dot center dot S-C interactions in pentafluorophenyl 2,2'-bithiazole are shown to be realistic ``r-hole'' interactions based on high resolution X-ray charge density analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opportunistic relay selection in a multiple source-destination (MSD) cooperative system requires quickly allocating to each source-destination (SD) pair a suitable relay based on channel gains. Since the channel knowledge is available only locally at a relay and not globally, efficient relay selection algorithms are needed. For an MSD system, in which the SD pairs communicate in a time-orthogonal manner with the help of decode-and-forward relays, we propose three novel relay selection algorithms, namely, contention-free en masse assignment (CFEA), contention-based en masse assignment (CBEA), and a hybrid algorithm that combines the best features of CFEA and CBEA. En masse assignment exploits the fact that a relay can often aid not one but multiple SD pairs, and, therefore, can be assigned to multiple SD pairs. This drastically reduces the average time required to allocate an SD pair when compared to allocating the SD pairs one by one. We show that the algorithms are much faster than other selection schemes proposed in the literature and yield significantly higher net system throughputs. Interestingly, CFEA is as effective as CBEA over a wider range of system parameters than in single SD pair systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The boxicity (cubicity) of a graph G, denoted by box(G) (respectively cub(G)), is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (cubes) in ℝ k . The problem of computing boxicity (cubicity) is known to be inapproximable in polynomial time even for graph classes like bipartite, co-bipartite and split graphs, within an O(n 0.5 − ε ) factor for any ε > 0, unless NP = ZPP. We prove that if a graph G on n vertices has a clique on n − k vertices, then box(G) can be computed in time n22O(k2logk) . Using this fact, various FPT approximation algorithms for boxicity are derived. The parameter used is the vertex (or edge) edit distance of the input graph from certain graph families of bounded boxicity - like interval graphs and planar graphs. Using the same fact, we also derive an O(nloglogn√logn√) factor approximation algorithm for computing boxicity, which, to our knowledge, is the first o(n) factor approximation algorithm for the problem. We also present an FPT approximation algorithm for computing the cubicity of graphs, with vertex cover number as the parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, a novel air-assisted impinging jet atomization is demonstrated. A configuration in which a gas jet is directed on to the impinging point of two liquid jets is used to improve the atomization. The effect of liquid properties such as viscosity and surface tension, angle between liquid jets and gas injection orifice diameter on spray characteristics has been experimentally studied. Backlit imaging and particle/droplet imaging and analysis techniques are utilized to characterize the sprays. The experimental results indicate that the effect of liquid viscosity is significant on the liquid sheet break up formed by the impinging jets. However, surface tension does not affect the spray structure significantly in this mode of atomization. At low liquid jet velocity, the prompt mode of atomization is observed where as atomization occurs in classical mode at higher liquid jet velocity. Results showed that variation in the angle between liquid jets do not affect the breakup phenomenon significantly. The spray angle is computed by finding the angle between the lines joining the impinging point and spray edge at an axial distance of 15 mm downstream of the impinging point from the ensemble-averaged data over 100 spray images. It was observed that effect of liquid jets impinging angle on the spray angle is higher at higher liquid velocity. Higher viscosity liquids exhibit lower spray angles. Droplet size measurements indicate a radial variation in the spray. An overall Sauter Mean Diameter (SMD) value is obtained by combining the droplet statistics at all radial locations at a fixed axial location. A very interesting trend is that the SMD is constant beyond a critical Gas to Liquid Ratio (GLR) and momentum ratio for a large variation in liquid viscosity and surface tension. This observation has important ramifications for fuel flexible systems. (C) 2013 Elsevier Ltd. All rights reserved.