447 resultados para Copper aluminum silver alloy
Resumo:
The infra-red spectra of a large number of ternary Cu(II) oxides with at least a quasi square-planar coordination of oxygen around the copper ions have been studied. The frequency of the bands with the highest frequency,v max, is found to correlate extremely well with the shortest Cu–O distance.v max increases at an impressive rate of sim20 cm–1 per 0.01 Å when the Cu–O distance becomes less than 1.97 Å, which is the Cu2+–O2– distance in square-planar CuO4 complexes as obtained from empirical ionic radii considerations. The marked sensitivity may be used as a ldquotitrationrdquo procedure not only to assign bands but also to obtain diagnostic information about local coordination in compounds derived, for example, from the YBa2Cu3O7–d structure such as LaCaBaCu3O7–d . The only example where this correlation fails is in the two-layer non-superconducting oxides derived from La2(Ca, Sr)Cu2O6. The significance of this result is discussed. The marked dependence of frequency on the bond-distance is qualitatively examined in terms of an increased electron-phonon coupling to account for the observed tendency of the superconducting transition temperature to go through a maximum as the average basal plane Cu–O distance is decreased.
Resumo:
Aluminium-silicon alloy, an important material used for the construction of internal combustion engines, exhibit pressure induced distinct regimes of wear and friction; ultra-mild and mild. In this work the alloy is slid lubricated against a spherical steel pin at contact pressures characteristic of the two test regimes, at a very low sliding velocity. In both cases, the friction is controlled at the initial stages of sliding by the abrasion of the steel pin by the protruding silicon particles of the disc. The generation of nascent steel chips helps to breakdown the additive in the oil by a cationic exchange that yields chemical products of benefits to the tribology. The friction is initially controlled by abrasion, but the chemical products gain increasing importance in controlling friction with sliding time. After long times, depending on contact pressure, the chemical products determine sliding friction exclusively. In this paper, a host of mechanical and spectroscopic techniques are used to identify and characterize mechanical damage and chemical changes. Although the basic dissipation mechanisms are the same in the two regimes, the matrix remains practically unworn in the low-pressure ultra-mild wear regime. In the higher pressure regime at long sliding times a small but finite wear rate prevails. Incipient plasticity in the subsurface controls the mechanism of wear.
Resumo:
Hypo-eutectic Ti-6.5 wt % Si alloy modified by separate additions of misch metal and low surface tension elements (Na, Sr, Se and Bi) has been examined by microscopic study and thermal analysis. Addition of third element led to modification of microstructure with apparently no significant enhancement of tensile ductility, with the exception of bismuth. Bismuth enhanced the ductility of the alloy by a factor of two and elastic-plastic fracture toughness to 9 MPa m–1/2 from a value of almost zero. The improved ductility of bismuth modified alloy is attributed to the reduced interconnectivity of the eutectic suicide, absence of significant suicide precipitation in the eutectic region and increase in the volume fraction of uniformly distributed dendrites. These changes are accompanied by a decrease in the temperature of eutectic solidification.
Resumo:
Microporous polybenzimidazole (PBI) of 250–500 μm bead size has been epoxidized and subsequently reacted with l-cysteine in the presence of a phase-transfer catalyst at room temperature to obtain a sorbent having anchored l-cysteine, EPBI(Cyst). The sorption of Cu(II), Ni(II), Co(II), and Zn(II) in mildly acidic and ammoniacal solutions has been measured under comparable conditions on EPBI(Cyst) and Dowex 50W-X8(H+) resins. While the latter shows no appreciable difference in sorption of the four metals in acidic and ammoniacal media and has 40–60 % selectivity for copper(II) over the other three, EPBI(Cyst) shows a threefold increase in copper sorption and more than 90% copper selectivity over the other metals in ammoniacal media, compared to mildly acidic media. The copper binding constant and saturation capacity of EPBI(Cyst) in ammoniacal media decrease only slowly beyond pH 11.6 with the result that the resin shows significant sorption of Cu(II) even in strongly ammoniacal solutions. The sorbed copper is stripped with HCl relatively easily. The copper sorption kinetics on EPBI(Cyst) is unusually fast in ammoniacal media with more than 90 % of equilibrium sorption being attained in one minute.
Resumo:
Silver nitrate-acetonitrile and π iodine-benzene complexes in thermotropic liquid crystals have been studied by 1H, 2H, and 13C NMR spectroscopy and by optical microscopy. Evidence for at least two silver complexes in each liquid crystal is presented.
Resumo:
Characterization of silver- and gold-related defects in gallium arsenide is carried out. These impurities were introduced during the thermal diffusion process and the related defects are characterized by deep-level transient spectroscopy and photoluminescence. The silver-related center in GaAs shows a 0.238 eV photoluminescence line corresponding to no-phonon transition, whereas its thermal ionization energy is found to be 0.426 eV. The thermal activation energy of the gold-related center in GaAs is 0.395 eV, but there is no corresponding luminescence signal.
Resumo:
Di-2-pyridylaminechloronitratocopper(II) hemihydrate, [CuCl(NO3)(C10H9N3)].0.5H2O, M(r) = 341.21, monoclinic, P2(1)/a, a = 7.382 (1), b = 21.494 (4), c = 8.032 (1) angstrom, beta = 94.26 (1)-degrees, V = 1270.9 angstrom 3, Z = 4, D(m) = 1.78, D(x) = 1.782 g cm-3, lambda(Mo K-alpha) = 0.7107 angstrom, mu(Mo K-alpha) = 19.47 cm-1, F(000) = 688. The structure was solved by the heavy-atom method and refined to a final R value of 0.034 for 2736 reflections collected at 294 K. The structure consists of polymeric [Cu(dipyam)Cl(NO3)] units bridged by a chloride ion.
Resumo:
A Schiff base metal complex, [Cu(II)(PLP-DL-tyrosinato)(H2O)].4H2O (PLP = pyridoxal phosphate), with the molecular formula CuC17O13N2H27P has been prepared and characterized by magnetic, spectral, and X-ray structural studies. The compound crystallizes in the triclinic space group P1BAR with a = 8.616 (2) angstrom, b = 11.843 (3) angstrom, c = 12.177 (3) angstrom, alpha = 103.40 (2)degrees, beta = 112.32 (2)degrees, gamma = 76.50 (1)degrees, and Z = 2. The structure was solved by the heavy-atom method and refined by least-squares techniques to a final R value of 0.057 for 3132 independent reflections. The coordination geometry around Cu(II) is distorted square pyramidal with phenolic oxygen, imino nitrogen, and carboxylate oxygen from the Schiff base ligand and water oxygen as basal donor atoms. The axial site is occupied by a phosphate oxygen from a neighboring molecule, thus resulting in a one-dimensional polymer. The structure reveals pi-pi interaction of the aromatic side chain of the amino acid with the pyridoxal pi system. A comparative study is made of this complex with similar Schiff base complexes. The variable-temperature magnetic behavior of this compound shows a weak antiferromagnetic interaction.
Resumo:
In the present study silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract The effect of various process parameters like the reductant con centration mixing ratio of the reactants and the concentration of silver nitrate were studied in detail In the standardized process 10(-2) M silver nitrate solution was interacted for 411 with lemon Juice (2% citric acid concentration and 0 5% ascorbic acid concentration) in the ratio of 1 4(vol vol) The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm X ray diffraction analysis revealed the distinctive facets (1 1 1 200 220 2 2 2 and 3 1 1 planes) of silver nanoparticles We found that citric acid was the principal reducing agent for the nanosynthesis process FT IR spectral studies demonstrated citric acid as the probable stabilizing agent Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing MiePlot v 3 4 The theoretical particle size corresponding to 2% citric acid concentration was corn pared to those obtained by various experimental techniques like X ray diffraction analysis atomic force microscopy and transmission electron microscopy (C) 2010 Elsevier B V All rights reserved
Resumo:
Nanocrystalline Fe53Co47 alloy was synthesized by a single-step transmetallation chemical method at room temperature. The Fe53Co47 alloy nanoparticles of 77 and 47 wt% were dispersed in silica matrix by the sol-gel process using tetraethyl orthosilcate. Structural studies reveal that the as-prepared alloy powders are in bcc phase and silica is in an amorphous state. The phase-transition temperature and Mossbauer spectra analysis of the Fe-Co alloy establishes the homogeneous alloy formation. A saturation magnetization of 218 emu/g was obtained for pure FeCo alloy at room temperature. Scanning electron microscopic analysis demonstrates the hollow-sphere morphology for FeCo alloy particles. Magnetic nanocomposite consisting of 47 wt% FeCo-silica shows enhanced thermal stability over the native FeCo alloy. Electrical and dielectric properties of 47 wt% FeCo-silica nanocomposites were investigated as a function of frequency and temperature. It was found that the dielectric constants and dielectric loss were stable throughout the measured temperature (310-373 K). Our results indicate that FeCo-silica nanocomposite is a promising candidate for high-frequency applications. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The formation of anomalous indentations, with two opposite faces describing a pin-cushion effect and the other two faces normal, in long elongated grains of an extruded Mg-2Al-1Zn alloy is reported. Subsurface microstructural observations combined with Schmid factor calculations suggest that extension twinning accompanied by basal slip are the reasons for these. Johnson's expanding cavity model is invoked for further substantiation. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Terpyridine copper(II) complexes Cu(L)(2)](NO3)(2) where L is (4'-phenyl)-2 2' 6' 2 `'-terpyridine (ph-tpy in 1) and 4-(1 pyrenyl)]-2 2' 6' 2'-terpyridine (py-tpy in 2) are prepared characterized and their photocytotoxic activity studied The crystal structure of complex 1 shows distorted octahedral CuN6 coordination geometry The 1 2 electrolytic and one-electron paramagnetic complexes show a visible band near 650 nm in DMF-H2O The complexes show emission band at 352 nm for 1 and 425 nm for 2 when excited at 283 and 346 nm respectively The Cu(II)-Cu(I) redox couple is observed near -0 2 V versus SCE in DMF-0 1 m TBAP The complexes are avid partial-intercalative binders to calf thymus DNA giving binding constant (K-b) values of similar to 10(6) M-1 Complex 2 with its photoactive pyrenyl moiety exhibits significant photocleavage of pUC19 DNA in red light via singlet oxygen pathway Complex 2 also exhibits significant photo-activated cytotoxicity in HeLa cancer cells in visible light giving IC50 value of 11 9 mu M while being non-toxic in dark with an IC50 value of 130 5 mu M (C) 2010 Elsevier Ltd All rights reserved